Bioinformatics approach to predicting HIV drug resistance

被引:9
作者
Cordes, F
Kaiser, R
Selbig, J
机构
[1] Univ Potsdam, Inst Biochem & Biol, Max Planck Inst Mol Plant Physiol, D-14476 Potsdam, Germany
[2] Konrad Zuse Zentrum, Div Comp Sci, Dept Numer Anal & Modeling, D-14195 Berlin, Germany
[3] Univ Cologne, Inst Virol, D-50935 Cologne, Germany
关键词
bioinformatics; clustering; drug resistance; genotype; HIV-1; machine learning; phenotype;
D O I
10.1586/14737159.6.2.207
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
The emergence of drug resistance remains one of the most challenging issues in the treatment of HIV-1 infection. The extreme replication dynamics of HIV facilitates its escape from the selective pressure exerted by the human immune system and by the applied combination drug therapy. This article reviews computational methods whose combined use can support the design of optimal antiretroviral therapies based on viral genotypic and phenotypic data. Genotypic assays are based on the analysis of mutations associated with reduced drug susceptibility, but are difficult to interpret due to the numerous mutations and mutational patterns that confer drug resistance. Phenotypic resistance or susceptibility can be experimentally evaluated by measuring the inhibition of the viral replication in cell culture assays. However, this procedure is expensive and time consuming.
引用
收藏
页码:207 / 215
页数:9
相关论文
共 46 条
[1]  
Baum D, 2005, LECT NOTES COMPUT SC, V3695, P198
[2]   In vitro selection of mutations in the human immunodeficiency virus type 1 reverse transcriptase that decrease susceptibility to (-)-β-D-dioxolane-guanosine and suppress resistance to 3′-azido-3′-deoxythymidine [J].
Bazmi, HZ ;
Hammond, JL ;
Cavalcanti, SCH ;
Chu, CK ;
Schinazi, RF ;
Mellors, JW .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2000, 44 (07) :1783-1788
[3]   Estimating HIV evolutionary pathways and the genetic barrier to drug resistance [J].
Beerenwinkel, N ;
Däumer, M ;
Sing, T ;
Rahnenführer, J ;
Lengauer, T ;
Selbig, J ;
Hoffmann, D ;
Kaiser, R .
JOURNAL OF INFECTIOUS DISEASES, 2005, 191 (11) :1953-1960
[4]   Computational methods for the design of effective therapies against drug resistant HIV strains [J].
Beerenwinkel, N ;
Sing, T ;
Lengauer, T ;
Rahnenführer, J ;
Roomp, K ;
Savenkov, I ;
Fischer, R ;
Hoffmann, D ;
Selbig, J ;
Korn, K ;
Walter, H ;
Berg, T ;
Braun, P ;
Fätkenheuer, G ;
Oette, M ;
Rockstroh, J ;
Kupfer, B ;
Kaiser, R ;
Däumer, M .
BIOINFORMATICS, 2005, 21 (21) :3943-3950
[5]   Diversity and complexity of HIV-1 drug resistance: A bioinformatics approach to predicting phenotype from genotype [J].
Beerenwinkel, N ;
Schmidt, B ;
Walter, H ;
Kaiser, R ;
Lengauer, T ;
Hoffmann, D ;
Korn, K ;
Selbig, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :8271-8276
[6]   Geno2pheno: Interpreting genotypic HIV drug resistance tests [J].
Beerenwinkel, N ;
Lengauer, T ;
Selbig, J ;
Schmidt, B ;
Walter, H ;
Korn, K ;
Kaiser, R ;
Hoffmann, D .
IEEE INTELLIGENT SYSTEMS, 2001, 16 (06) :35-41
[7]  
Clavel F, 2004, NEW ENGL J MED, V350, P1023, DOI 10.1056/NEJM2ra025195
[8]   A randomized trial assessing the impact of phenotypic resistance testing on antiretroviral therapy [J].
Cohen, CJ ;
Hunt, S ;
Sension, M ;
Farthing, C ;
Conant, M ;
Jacobson, S ;
Nadler, J ;
Verbiest, W ;
Hertogs, K ;
Ames, M ;
Rinehart, AR ;
Graham, NM .
AIDS, 2002, 16 (04) :579-588
[9]  
DeGruttola V, 2000, ANTIVIR THER, V5, P41
[10]  
Deuflhard P, 2003, TRENDS IN NONLINEAR ANALYSIS, P269