Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by in situ chemical oxidative polymerization

被引:79
作者
Wu, TM [1 ]
Lin, SH [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Mat Sci & Engn, Taichung 402, Taiwan
关键词
carbon nanotubes; conducting polymer; conductivity; morphology; Raman spectroscopy;
D O I
10.1002/polb.20809
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This study describes the preparation of polypyrrole (PPy)/multiwalled carbon nanotube (MWNT) composites by in situ chemical oxidative polymerization. Various ratios of MWNTs, which served as hard templates, were first dispersed in aqueous solutions with the surfactant cetyltrimethylammonium bromide to form micelle/MWNT templates and overcome the difficulty of MWNTs dispersing into insoluble solutions of pyrrole monomer, and PPy was then synthesized via in situ chemical oxidative polymerization on the surface of the templates. Raman spectroscopy, Fourier transform infrared (FTIR), field-emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the structure and morphology of the fabricated composites. Structural analysis using FESEM and HRTEM showed that the PPy/MWNT composites were core (MWNT)-shell (PPy) tubular structures. Raman and FTIR spectra of the composites were almost identical to those of PPy, supporting the idea that MWNTs served as the core in the formation of a coaxial nanostructure for the composites. The conductivities of these PPy/MWNT composites were about 150% higher than those of PPy without MWNTs. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:1413 / 1418
页数:6
相关论文
共 34 条
[1]  
Ago H, 1999, ADV MATER, V11, P1281, DOI 10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO
[2]  
2-6
[3]   Optical and electrical characterization of a conducting polypyrrole composite prepared by in situ electropolymerization [J].
Aguilar-Hernàndez, J ;
Potje-Kamloth, K .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (08) :1735-1742
[4]   ALIGNED CARBON NANOTUBE ARRAYS FORMED BY CUTTING A POLYMER RESIN-NANOTUBE COMPOSITE [J].
AJAYAN, PM ;
STEPHAN, O ;
COLLIEX, C ;
TRAUTH, D .
SCIENCE, 1994, 265 (5176) :1212-1214
[5]   OPTIMUM REACTION CONDITIONS FOR THE POLYMERIZATION OF PYRROLE BY IRON(III) CHLORIDE IN AQUEOUS-SOLUTION [J].
ARMES, SP .
SYNTHETIC METALS, 1987, 20 (03) :365-371
[6]   SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization [J].
Barraza, HJ ;
Pompeo, F ;
O'Rear, EA ;
Resasco, DE .
NANO LETTERS, 2002, 2 (08) :797-802
[7]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[8]   Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone) [J].
Chen, AH ;
Kamata, K ;
Nakagawa, M ;
Iyoda, T ;
Wang, HQ ;
Li, XY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (39) :18283-18288
[9]  
Curran SA, 1998, ADV MATER, V10, P1091, DOI 10.1002/(SICI)1521-4095(199810)10:14<1091::AID-ADMA1091>3.0.CO
[10]  
2-L