Joint discriminative dimensionality reduction and dictionary learning for face recognition

被引:98
作者
Feng, Zhizhao [1 ]
Yang, Meng [1 ]
Zhang, Lei [1 ]
Liu, Yan [1 ]
Zhang, David [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China
关键词
Dictionary learning; Face recognition; Dimensionality reduction; Collaborative representation; ALGORITHM;
D O I
10.1016/j.patcog.2013.01.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In linear representation based face recognition (FR), it is expected that a discriminative dictionary can be learned from the training samples so that the query sample can be better represented for classification. On the other hand, dimensionality reduction is also an important issue for FR. It cannot only reduce significantly the storage space of face images, but also enhance the discrimination of face feature. Existing methods mostly perform dimensionality reduction and dictionary learning separately, which may not fully exploit the discriminative information in the training samples. In this paper, we propose to learn jointly the projection matrix for dimensionality reduction and the discriminative dictionary for face representation. The joint learning makes the learned projection and dictionary better fit with each other so that a more effective face classification can be obtained. The proposed algorithm is evaluated on benchmark face databases in comparison with existing linear representation based methods, and the results show that the joint learning improves the FR rate, particularly when the number of training samples per class is small. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2134 / 2143
页数:10
相关论文
共 32 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], 1999, CITESEER
[3]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[4]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[5]  
Belkin M, 2002, ADV NEUR IN, V14, P585
[6]   How should we represent faces for automatic recognition? [J].
Craw, I ;
Costen, N ;
Kato, T ;
Akamatsu, S .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (08) :725-736
[7]   Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [J].
Figueiredo, Mario A. T. ;
Nowak, Robert D. ;
Wright, Stephen J. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) :586-597
[8]   From few to many: Illumination cone models for face recognition under variable lighting and pose [J].
Georghiades, AS ;
Belhumeur, PN ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (06) :643-660
[9]   Multi-PIE [J].
Gross, Ralph ;
Matthews, Iain ;
Cohn, Jeffrey ;
Kanade, Takeo ;
Baker, Simon .
IMAGE AND VISION COMPUTING, 2010, 28 (05) :807-813
[10]  
Ham J., 2004, P ICML