Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle

被引:174
作者
Flucher, BE
FranziniArmstrong, C
机构
[1] UNIV PENN, DEPT CELL & DEV BIOL, PHILADELPHIA, PA 19104 USA
[2] UNIV INNSBRUCK, DEPT BIOCHEM PHARMACOL, A-6020 INNSBRUCK, AUSTRIA
关键词
D O I
10.1073/pnas.93.15.8101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During excitation-contraction (e-c) coupling of striated muscle, depolarization of the surface membrane is converted into Ca2+ release from internal stores. This process occurs at intracellular junctions characterized by a specialized composition and structural organization of membrane proteins. The coordinated arrangement of the two key junctional components-the dihydropyridine receptor (DHPR) in the surface membrane and the ryanodine receptor (RyR) in the sarcoplasmic reticulum-is essential for their normal, tissue-specific function in e-c coupling. The mechanisms involved in the formation of the junctions and a potential participation of DHPRs and RyRs in this process have been subject of intensive studies over the past 5 years. In this review we discuss recent advances in understanding the organization of these molecules in skeletal and cardiac muscle, as well as their concurrent and independent assembly during development of normal and mutant muscle. From this information we derive a model for the assembly of the junctions and the establishment of the precise structural relationship between DHPRs and RyRs that underlies their interaction in e-c coupling.
引用
收藏
页码:8101 / 8106
页数:6
相关论文
共 72 条
[1]  
ADAMS B, 1991, FASEB J, V4, P2809
[2]   A NOVEL CALCIUM CURRENT IN DYSGENIC SKELETAL-MUSCLE [J].
ADAMS, BA ;
BEAM, KG .
JOURNAL OF GENERAL PHYSIOLOGY, 1989, 94 (03) :429-444
[3]   INTRAMEMBRANE CHARGE MOVEMENT RESTORED IN DYSGENIC SKELETAL-MUSCLE BY INJECTION OF DIHYDROPYRIDINE RECEPTOR CDNAS [J].
ADAMS, BA ;
TANABE, T ;
MIKAMI, A ;
NUMA, S ;
BEAM, KG .
NATURE, 1990, 346 (6284) :569-572
[4]   A LETHAL MUTATION IN MICE ELIMINATES THE SLOW CALCIUM CURRENT IN SKELETAL-MUSCLE CELLS [J].
BEAM, KG ;
KNUDSON, CM ;
POWELL, JA .
NATURE, 1986, 320 (6058) :168-170
[5]   STRUCTURAL EVIDENCE FOR DIRECT INTERACTION BETWEEN THE MOLECULAR-COMPONENTS OF THE TRANSVERSE TUBULE SARCOPLASMIC-RETICULUM JUNCTION IN SKELETAL-MUSCLE [J].
BLOCK, BA ;
IMAGAWA, T ;
CAMPBELL, KP ;
FRANZINIARMSTRONG, C .
JOURNAL OF CELL BIOLOGY, 1988, 107 (06) :2587-2600
[6]   COMPARATIVE STEREOLOGY OF THE MOUSE AND FINCH LEFT-VENTRICLE [J].
BOSSEN, EH ;
SOMMER, JR ;
WAUGH, RA .
TISSUE & CELL, 1978, 10 (04) :773-784
[7]   MOLECULAR-INTERACTIONS OF THE JUNCTIONAL FOOT PROTEIN AND DIHYDROPYRIDINE RECEPTOR IN SKELETAL-MUSCLE TRIADS [J].
BRANDT, NR ;
CASWELL, AH ;
WEN, SR ;
TALVENHEIMO, JA .
JOURNAL OF MEMBRANE BIOLOGY, 1990, 113 (03) :237-251
[8]   THE CONTROL OF CALCIUM-RELEASE IN HEART-MUSCLE [J].
CANNELL, MB ;
CHENG, H ;
LEDERER, WJ .
SCIENCE, 1995, 268 (5213) :1045-1049
[9]   LOCALIZATION AND PARTIAL CHARACTERIZATION OF THE OLIGOMERIC DISULFIDE-LINKED MOLECULAR-WEIGHT 95000 PROTEIN (TRIADIN) WHICH BINDS THE RYANODINE AND DIHYDROPYRIDINE RECEPTORS IN SKELETAL-MUSCLE TRIADIC VESICLES [J].
CASWELL, AH ;
BRANDT, NR ;
BRUNSCHWIG, JP ;
PURKERSON, S .
BIOCHEMISTRY, 1991, 30 (30) :7507-7513
[10]  
CASWELL AH, 1979, J BIOL CHEM, V254, P202