Microwave-assisted hydrothermal synthesis of low-temperature LiCoo2

被引:10
作者
Jaehne, C. [1 ]
Klingeler, R. [1 ]
机构
[1] Heidelberg Univ, Kirchhoff Inst Phys, INF 227, D-69120 Heidelberg, Germany
关键词
Nanoscaled oxides; Hydrothermal synthesis; Lithium-ion batteries; Cyclic voltammetry; Galvanostatic cycling; ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; LITHIUM; INTERCALATION; TRANSITION; SIZE; TRANSPORT; BATTERIES; SPINEL;
D O I
10.1016/j.solidstatesciences.2012.04.033
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A microwave-assisted hydrothermal synthesis route was developed for LT-LiCoo(2) and compared with the conventional hydrothermal synthesis. Our X-ray diffraction, magnetisation, and electron microscopy and electrochemical studies in both cases indicate phase-pure and practically stoichiometric materials with Li-content >= 0.99. The microwave-assisted procedure allows reducing the synthesis temperature down to 170 degrees C which yields plate-like nano-sized LT-LiCoo(2) compared to the conventionally synthesized micro-scaled material. These differences clearly show-up in the cyclic voltammetry and the galvanostatic intermittent titration technique data which are used for further characterisation of the materials. In both cases, a tiny non-stoichiometry is suggested by the presence of low-temperature small high-spin Co4+-ions. Our results show that the microwave-assisted process allows lower synthesis temperatures for practically stoichiometric LT-LiCoo(2) which is associated to size-reduction of the resulting crystallites down to the nanometre-scale and a higher fraction of the competing spinel phase. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:941 / 947
页数:7
相关论文
共 40 条
[1]   CoO2, the end member of the LixCoO2 solid solution [J].
Amatucci, GG ;
Tarascon, JM ;
Klein, LC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) :1114-1123
[2]   LiCoO2:: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties [J].
Antolini, E .
SOLID STATE IONICS, 2004, 170 (3-4) :159-171
[3]   Reinvestigation of the magnetic behavior of O3-LiCoO2 [J].
Artemenko, Alla ;
Menetrier, Michel ;
Pollet, Michael ;
Delmas, Claude .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (06)
[4]   Microwave chemistry for inorganic nanomaterials synthesis [J].
Bilecka, Idalia ;
Niederberger, Markus .
NANOSCALE, 2010, 2 (08) :1358-1374
[5]   Hydrothermal technology for nanotechnology [J].
Byrappa, K. ;
Adschiri, T. .
PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, 2007, 53 (02) :117-166
[6]   Hydrothermal synthesis of cathode materials [J].
Chen, Jiajun ;
Wang, Shijun ;
Whittingham, M. Stanley .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :442-448
[7]   STRUCTURAL CLASSIFICATION AND PROPERTIES OF THE LAYERED OXIDES [J].
DELMAS, C ;
FOUASSIER, C ;
HAGENMULLER, P .
PHYSICA B & C, 1980, 99 (1-4) :81-85
[8]   Electrode materials for lithium secondary batteries prepared by sol-gel methods [J].
Fu, LJ ;
Liu, H ;
Li, C ;
Wu, YP ;
Rahm, E ;
Holze, R ;
Wu, HQ .
PROGRESS IN MATERIALS SCIENCE, 2005, 50 (07) :881-928
[9]   Electrochemical properties of low temperature crystallized LiCoO2 [J].
Garcia, B ;
Farcy, J ;
PereiraRamos, JP ;
Baffier, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1179-1184
[10]   SPINEL VERSUS LAYERED STRUCTURES FOR LITHIUM COBALT OXIDE SYNTHESIZED AT 400-DEGREES-C [J].
GUMMOW, RJ ;
LILES, DC ;
THACKERAY, MM .
MATERIALS RESEARCH BULLETIN, 1993, 28 (03) :235-246