System Identification of Electronic Nose Data From Cyanobacteria Experiments

被引:14
作者
Searle, Graham E. [1 ]
Gardner, Julian W. [1 ]
Chappell, Michael J. [1 ]
Godfrey, Keith R. [1 ]
Chapman, Michael J. [2 ]
机构
[1] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
[2] Coventry Univ, Sch MIS Math, Coventry, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Biological systems; identification; modeling; sensors;
D O I
10.1109/JSEN.2002.800286
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Linear black-box modeling techniques are applied to both steady state and dynamic data gathered from two electronic nose experiments involving cyanobacteria cultures. Analysis of the data from a strain identification experiment shows that very simple low order MISO black box model structures are able to produce very high success rates (up to 100%) when identifying the toxic strain of cyanobacteria. This is comparable with the best success rates for steady state data reported elsewhere using artificial neural networks. Analysis of data from a growth phase identification experiment using MIMO black-box models produces success rates of 82.3% for steady state data and 76.6% for dynamic data. This compares poorly with the best performing nonlinear artificial neural networks, which obtained a 95.1% success rate on the same data. This demonstrates the limitations of these linear techniques when applied to more difficult problems.
引用
收藏
页码:218 / 229
页数:12
相关论文
共 14 条
[1]   Electronic nose and sensorial analysis: comparison of performances in selected cases [J].
Di Natale, C ;
Macagnano, A ;
Paolesse, R ;
Mantini, A ;
Tarizzo, E ;
D'Amico, A ;
Sinesio, F ;
Bucarelli, FM ;
Moneta, E ;
Quaglia, GB .
SENSORS AND ACTUATORS B-CHEMICAL, 1998, 50 (03) :246-252
[2]  
Gardner J. W., 1999, ELECT NOSES PRINCIPL
[3]   APPLICATION OF AN ELECTRONIC NOSE TO THE DISCRIMINATION OF COFFEES [J].
GARDNER, JW ;
SHURMER, HV ;
TAN, TT .
SENSORS AND ACTUATORS B-CHEMICAL, 1992, 6 (1-3) :71-75
[4]   DETECTION OF VAPORS AND ODORS FROM A MULTISENSOR ARRAY USING PATTERN-RECOGNITION .1. PRINCIPAL COMPONENT AND CLUSTER-ANALYSIS [J].
GARDNER, JW .
SENSORS AND ACTUATORS B-CHEMICAL, 1991, 4 (1-2) :109-115
[5]  
GARDNER JW, 1994, SENSOR ACTUAT B-CHEM, V18, P211
[6]   POLYMER-BASED SENSOR ARRAYS AND MULTICOMPONENT ANALYSIS FOR THE DETECTION OF HAZARDOUS ORGANIC VAPORS IN THE ENVIRONMENT [J].
HIERLEMANN, A ;
WEIMAR, U ;
KRAUS, G ;
SCHWEIZERBERBERICH, M ;
GOPEL, W .
SENSORS AND ACTUATORS B-CHEMICAL, 1995, 26 (1-3) :126-134
[7]   Electronic noses: a review of signal processing techniques [J].
Hines, EL ;
Llobet, E ;
Gardner, JW .
IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 1999, 146 (06) :297-310
[8]  
Ljung L, 1998, APPL NUM HARM ANAL, P163
[9]  
Ljung L, 1987, SYSTEM IDENTIFICATIO
[10]   Non-destructive banana ripeness determination using a neural network-based electronic nose [J].
Llobet, E ;
Hines, EL ;
Gardner, JW ;
Franco, S .
MEASUREMENT SCIENCE AND TECHNOLOGY, 1999, 10 (06) :538-548