Redox regulation of c-Jun DNA binding by reversible S-glutathiolation

被引:233
作者
Klatt, P
Molina, EP
De Lacoba, MG
Padilla, CA
Martínez-Galisteo, E
Bárcena, JA
Lamas, S
机构
[1] CSIC, Ctr Invest Biol, Dept Estructura & Func Prot, Inst Reina Invest Nefrol, E-28006 Madrid, Spain
[2] Univ Cordoba, Fac Vet, Dept Bioquim & Biol Mol, E-14071 Cordoba, Spain
关键词
glutathione; redox regulation; S; thiolation; transcription factor;
D O I
10.1096/fasebj.13.12.1481
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Redox control of the transcription factor c-Jun maps to a single cysteine in its DNA binding domain. However, the nature of the oxidized state of this cysteine and, thus, the potential molecular mechanisms accounting for the redox regulation of c-Jun DNA binding remain unclear. To address this issue, we have analyzed the purified recombinant c-Jun DNA binding domain for redox-dependent thiol modifications and concomitant changes in DNA binding activity. We show that changes in the ratio of reduced to oxidized glutathione provide the potential to oxidize c-Jun sulfhydryls by mechanisms that include both protein disulfide formation and S-glutathiolation, We provide evidence that S-glutathiolation, which is specifically targeted to the cysteine residue located in the DNA binding site of the protein, may account for the reversible redox regulation of c-Jun DNA binding. Furthermore, based on a molecular model of the S-glutathiolated protein, we discuss the structural elements facilitating S-glutathiolation and how this modification interferes with DNA binding, Given the structural similarities between the positively charged cysteine-containing DNA binding motif of c-Jun and the DNA binding site of related oxidant-sensitive transcriptional activators, the unprecedented phenomenon of redox-triggered S-thiolation of a transcription factor described in this report suggests a novel role for protein thiolation in the redox control of transcription.
引用
收藏
页码:1481 / 1490
页数:10
相关论文
共 37 条
[1]   REDOX REGULATION OF FOS AND JUN DNA-BINDING ACTIVITY INVITRO [J].
ABATE, C ;
PATEL, L ;
RAUSCHER, FJ ;
CURRAN, T .
SCIENCE, 1990, 249 (4973) :1157-1161
[2]   Thioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor I [J].
Bandyopadhyay, S ;
Starke, DW ;
Mieyal, JJ ;
Gronostajski, RM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (01) :392-397
[3]  
BANNISTER AJ, 1991, ONCOGENE, V6, P1243
[4]  
BUSHWELLER JH, 1997, EUR J BIOCHEM, V235, P1585
[5]   PROTEIN S-THIOLATION IN HEPATOCYTES STIMULATED BY T-BUTYL HYDROPEROXIDE, MENADIONE, AND NEUTROPHILS [J].
CHAI, YC ;
HENDRICH, S ;
THOMAS, JA .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1994, 310 (01) :264-272
[6]   S-THIOLATION OF INDIVIDUAL HUMAN NEUTROPHIL PROTEINS INCLUDING ACTIN BY STIMULATION OF THE RESPIRATORY BURST - EVIDENCE AGAINST A ROLE FOR GLUTATHIONE DISULFIDE [J].
CHAI, YC ;
ASHRAF, SS ;
ROKUTAN, K ;
JOHNSTON, RB ;
THOMAS, JA .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1994, 310 (01) :273-281
[7]   Recent trends in glutathione biochemistry - Glutathione-protein interactions: A molecular link between oxidative stress and cell proliferation? [J].
Cotgreave, IA ;
Gerdes, RG .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 242 (01) :1-9
[8]   Thioltransferase (glutaredoxin) is detected-within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitro [J].
Davis, DA ;
Newcomb, FM ;
Starke, DW ;
Ott, DE ;
Mieyal, JJ ;
Yarchoan, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (41) :25935-25940
[9]   X-RAY CRYSTAL-STRUCTURES OF CYTOSOLIC GLUTATHIONE S-TRANSFERASES - IMPLICATIONS FOR PROTEIN ARCHITECTURE, SUBSTRATE RECOGNITION AND CATALYTIC FUNCTION [J].
DIRR, H ;
REINEMER, P ;
HUBER, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 220 (03) :645-661
[10]   TISSUE SULFHYDRYL GROUPS [J].
ELLMAN, GL .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1959, 82 (01) :70-77