Randomized rejection procedure for the two-sample Kolmogorov-Smimov statistic

被引:7
作者
Greenwell, RN [1 ]
Finch, SJ
机构
[1] Hofstra Univ 103, Dept Math, Hempstead, NY 11549 USA
[2] SUNY Stony Brook, Stony Brook, NY 11794 USA
关键词
Kolmogorov-Smimov; continuity correction; discretization; randomization;
D O I
10.1016/S0167-9473(03)00148-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The two-sample Kolmogorov-Smimov test is unable to achieve an arbitrary probability of Type 1 error because it can only take on a limited number of discrete values. We offer a randomized procedure that achieves any specified value of alpha. We derive formulas for approximating the achievable p-values immediately above and below the desired value of alpha. For the value of the statistic corresponding to the p-value greater than alpha, our procedure rejects the null hypothesis randomly with probability sufficient to achieve the specified alpha. Such a procedure is particularly appropriate for simulation studies. Our procedure leads to a different continuity correction than the one proposed by Kim (J. Amer. Statist. Assoc. 64 (1969) 1625), using the criterion that the continuity correction should cause the randomized procedure to reject the null hypothesis with probability alpha. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:257 / 267
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 1973, SELECTED TABLES MATH
[2]   ON THE KOLMOGOROV-SMIRNOV LIMIT THEOREMS FOR EMPIRICAL DISTRIBUTIONS [J].
FELLER, W .
ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (02) :177-189
[3]   CRITICAL VALUES FOR ONE-SIDED 2-SAMPLE KOLMOGOROV-SMIRNOV STATISTIC [J].
GAIL, MH ;
GREEN, SB .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (355) :757-760
[5]   AN ALGORITHM FOR CONDUCTING EXACT SMIRNOV TESTS [J].
HILTON, JF ;
MEHTA, CR ;
PATEL, NR .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1994, 17 (04) :351-361
[6]   THE DISTRIBUTION OF THE MAXIMUM DEVIATION BETWEEN 2 SAMPLE CUMULATIVE STEP FUNCTIONS [J].
MASSEY, FJ .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :125-128
[7]  
Nikiforov A. M., 1994, APPL STAT-J ROY ST C, V43, P265
[8]   CALCULATION OF DISTRIBUTIONS OF 2-SIDED KOLMOGOROV-SMIRNOV TYPE STATISTICS [J].
NOE, M .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (01) :58-+
[9]   SOME FURTHER EVIDENCE ON POWER OF DURBIN-WATSON AND GEARY TESTS [J].
SCHMIDT, P ;
GUILKEY, DK .
REVIEW OF ECONOMICS AND STATISTICS, 1975, 57 (03) :379-382
[10]   TABLE FOR ESTIMATING THE GOODNESS OF FIT OF EMPIRICAL DISTRIBUTIONS [J].
SMIRNOV, N .
ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (02) :279-279