Moment Independent and Variance-Based Sensitivity Analysis with Correlations: An Application to the Stability of a Chemical Reactor

被引:46
作者
Borgonovo, E. [1 ]
Tarantola, S. [2 ]
机构
[1] Bocconi Univ, Dept Decis Sci, ELUSI Res Ctr, I-20135 Milan, Italy
[2] Commiss European Communities, Joint Res Ctr, Inst Protect & Secur Citizen, I-21027 Ispra, VA, Italy
关键词
D O I
10.1002/kin.20368
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent works have attracted interest toward sensitivity measures that use the entire model output distribution, without dependence on any of its particular moments (e.g., variance). However, the computation of moment-independent importance measures in the presence of dependencies among model inputs has not been dealt with yet. This work has two purposes. On the one hand, to introduce moment independent techniques in the analysis of chemical reaction models. On the other hand, to allow their computation in the presence of correlations. To do so, a new approach based on Gibbs sampling is presented that allows the joint estimation of variance-based and moment independent sensitivity measures in the presence of correlations. The application to the stability of a chemical reactor is then discussed, allowing full consideration of historical data that included a correlation coefficient of 0.7 between two of the model parameters. (c) 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 687-698,2008
引用
收藏
页码:687 / 698
页数:12
相关论文
共 34 条
[1]  
[Anonymous], STUDIES SUBJECTIVE P
[2]  
Bedford T, 1998, P 2 INT S SENS AN MO, P17
[3]   Global sensitivity analysis in inventory management [J].
Borgonovo, E. ;
Peccati, L. .
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2007, 108 (1-2) :302-313
[4]  
BORONOVO E, 2007, RELIAB ENG SYST SAFE, V92, P771
[5]  
BORONOVO E, 2006, RISK ANAL, V26, P1349
[6]   Sensitivity analysis of an environmental model an application of different analysis methods [J].
Campolongo, F ;
Saltelli, A .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 1997, 57 (01) :49-69
[7]   An uncertainty importance measure using a distance metric for the change in a cumulative distribution function [J].
Chun, MH ;
Han, SJ ;
Tak, NI .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2000, 70 (03) :313-321
[8]   THE JACKKNIFE ESTIMATE OF VARIANCE [J].
EFRON, B ;
STEIN, C .
ANNALS OF STATISTICS, 1981, 9 (03) :586-596
[9]   A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling [J].
Helton, JC ;
Davis, FJ ;
Johnson, JD .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2005, 89 (03) :305-330
[10]   Importance measures in global sensitivity analysis of nonlinear models [J].
Homma, T ;
Saltelli, A .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 1996, 52 (01) :1-17