Single-domain antibody fragments with high conformational stability

被引:511
作者
Dumoulin, M
Conrath, K
Van Meirhaeghe, A
Meersman, F
Heremans, K
Frenken, LGJ
Muyldermans, S
Wyns, L
Matagne, A [1 ]
机构
[1] Univ Liege, Inst Chim B6, Ctr Ingn Prot, Enzymol Lab, B-4000 Liege, Sart Tilman, Belgium
[2] Free Univ Brussels, Dept Ultrastruct, B-1640 Rhode St Genese, Belgium
[3] Katholieke Univ Leuven, Dept Chem, B-3001 Louvain, Belgium
[4] Unilvever Nederland BV, NL-3013 AL Rotterdam, Netherlands
关键词
camel heavy-chain antibodies; protein stability; protein folding; circular dichroism; fluorescence; Fourier transform infrared spectroscopy; surface plasmon resonance; high pressure;
D O I
10.1110/ps.34602
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A variety of techniques, including high-pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single-domain antigen binders derived from camelid heavy-chain antibodies with specificities for lysozymes, beta-lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical- induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two-state mechanism (Nreversible arrowU), where only the native and the denatured states are significantly populated. Thermally- induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat-induced denaturation (apparent T-m= 60-80degrees-C), and display high conformational stabilities (DeltaG(H2O) = 30-60 kJ mole(-1)). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy-chain antibody fragments are of special interest for biotechnological and medical applications.
引用
收藏
页码:500 / 515
页数:16
相关论文
共 91 条