Overcoming the wall in the semiclassical baker's map

被引:20
作者
Kaplan, L [1 ]
Heller, EJ [1 ]
机构
[1] HARVARD SMITHSONIAN CTR ASTROPHYS,CAMBRIDGE,MA 02138
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.76.1453
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A major barrier in semiclassical calculations for chaotic systems is the exponential increase in the number of terms at long times. Using an analogy with spin-chain partition functions, we overcome this ''exponential wall'' for the baker's map, reducing to order NT3/2 the number of operations needed to evolve an N-state system for T time steps. This method enables us to obtain semiclassical results up to the Heisenberg time and beyond, providing new insight as to the accuracy of the semiclassical approximation. The semiclassical result is often correct; its breakdown is nonuniform.
引用
收藏
页码:1453 / 1456
页数:4
相关论文
共 16 条
[1]   THE QUANTIZED BAKERS TRANSFORMATION [J].
BALAZS, NL ;
VOROS, A .
EUROPHYSICS LETTERS, 1987, 4 (10) :1089-1094
[2]   THE QUANTIZED BAKERS TRANSFORMATION [J].
BALAZS, NL ;
VOROS, A .
ANNALS OF PHYSICS, 1989, 190 (01) :1-31
[3]   A RULE FOR QUANTIZING CHAOS [J].
BERRY, MV ;
KEATING, JP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4839-4849
[4]  
Bogomolny E. B., 1990, Comments on Atomic and Molecular Physics, V25, P67
[5]   PERIODIC-ORBIT QUANTIZATION OF CHAOTIC SYSTEMS [J].
CVITANOVIC, P ;
ECKHARDT, B .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :823-826
[6]   LONG-TIME BEHAVIOR OF THE SEMICLASSICAL BAKERS MAP [J].
DITTES, FM ;
DORON, E ;
SMILANSKY, U .
PHYSICAL REVIEW E, 1994, 49 (02) :R963-R966
[7]   PERIODIC ORBITS AND CLASSICAL QUANTIZATION CONDITIONS [J].
GUTZWILL.MC .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (03) :343-&
[8]   PHASE-INTEGRAL APPROXIMATION IN MOMENTUM SPACE AND BOUND STATES OF AN ATOM .2. [J].
GUTZWILLER, MC .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (06) :1004-+
[9]   SEMICLASSICAL DYNAMICS IN THE STRONGLY CHAOTIC REGIME - BREAKING THE LOG TIME BARRIER [J].
OCONNOR, PW ;
TOMSOVIC, S ;
HELLER, EJ .
PHYSICA D, 1992, 55 (3-4) :340-357
[10]   THE UNUSUAL NATURE OF THE QUANTUM BAKER TRANSFORMATION [J].
OCONNOR, PW ;
TOMSOVIC, S .
ANNALS OF PHYSICS, 1991, 207 (01) :218-264