Characterization of the Rheological, Textural, and Sensory Properties of Samples of Commercial US Cream Cheese with Different Fat Contents

被引:87
作者
Brighenti, M. [1 ]
Govindasamy-Lucey, S. [2 ]
Lim, K. [2 ]
Nelson, K. [2 ]
Lucey, J. A. [1 ]
机构
[1] Univ Wisconsin, Dept Food Sci, Madison, WI 53706 USA
[2] Wisconsin Ctr Dairy Res, Madison, WI 53706 USA
关键词
cream cheese; texture; sensory; rheology;
D O I
10.3168/jds.2008-1322
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
In this study, 18 commercial samples of cream cheeses from the United States, including full-fat, Neufchatel or one-third less fat, and fat-free cheeses were analyzed for their rheological, textural, and sensory properties. Dynamic rheological properties were measured by small-amplitude oscillatory rheology during heating from 5 to 80 degrees C and cooling from 80 to 5 degrees C. The parameters measured were storage modulus (G') and loss tangent (LT). Hardness of cream cheeses was determined by penetration and spreadability tests with a texture analyzer. Quantitative descriptive sensory analysis was performed by a trained panel to determine textural properties including firmness, stickiness, cohesiveness of mass, gumminess, difficulty to dissolve, particle size, and difficulty to spread. Principal component analysis of sensory and instrumental parameters was performed to identify relationships between these different parameters and to group samples with similar characteristics. A standard recipe for preparation of cheesecakes was used to test the influence of type of cream cheese on cake properties. Hardness of cheesecakes was also determined by penetration. Most full-fat cream cheeses showed significantly greater G' values than the Neufchatel or fat-free cheeses at temperatures below 25 degrees C during the heating cycle. For the cheeses containing fat (full fat and Neufchatel), G' values steeply decreased during heating up to 40 degrees C; the decrease was greater for full-fat cream cheese compared with Neufchatel cheeses. In full-fat cream cheese, one maximum in the LT profile was observed during heating at temperatures below 40 degrees C. In Neufchatel cheeses, a smaller maximum in LT was observed at temperatures below 40 degrees C, whereas fat-free cream cheeses showed no noticeable maximum LT in this temperature region. Most full-fat cream cheeses had greater values of hardness as determined by penetration or spreadability compared with Neufchatel or fat-free cheeses. Sensory analysis indicated that full-fat cream cheeses were firmer, more cohesive, more difficult to dissolve and spread, and less sticky than Neufchatel or fat-free cheeses. The high hardness of full-fat cream cheese is presumably due to its greater fat content because after homogenization of the cream cheese mix, fat globules are partly covered with casein and participate in the aggregation of casein particles, reinforcing the structure of this product. These results indicate that there are significant differences in the textural properties of cream cheese made with different fat contents.
引用
收藏
页码:4501 / 4517
页数:17
相关论文
共 42 条
[1]  
ABBOUD A, 1998, AM I BAKING RES DEP, V20, P1
[2]  
Aliste MA, 2005, AUST J DAIRY TECHNOL, V60, P225
[3]  
BECKER T, 1989, MILCHWISSENSCHAFT, V44, P626
[4]   Relationships among rheological and sensorial properties of young cheeses [J].
Brown, JA ;
Foegeding, EA ;
Daubert, CR ;
Drake, MA ;
Gumpertz, M .
JOURNAL OF DAIRY SCIENCE, 2003, 86 (10) :3054-3067
[5]   Texture of cheddar cheese as influenced by fat reduction [J].
Bryant, A ;
Ustunol, Z ;
Steffe, J .
JOURNAL OF FOOD SCIENCE, 1995, 60 (06) :1216-&
[6]   Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey [J].
Bryant, CM ;
Mcclements, DJ .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 1998, 9 (04) :143-151
[7]   Rheological properties of acid milk gels as affected by the nature of the fat globule surface material and heat treatment of milk [J].
Cho, YH ;
Lucey, JA ;
Singh, H .
INTERNATIONAL DAIRY JOURNAL, 1999, 9 (08) :537-545
[8]  
CRANE LA, 1992, Patent No. 5079024
[9]  
DAHLQUIST CA, 1969, ADHESION FUNDAMENTAL, P143
[10]  
Fox P.F., 2000, FUNDAMENTALS CHEESE