Regional effects of vegetation restoration on water yield across the Loess Plateau, China

被引:193
作者
Feng, X. M. [1 ]
Sun, G. [2 ]
Fu, B. J. [1 ]
Su, C. H. [1 ]
Liu, Y. [3 ]
Lamparski, H. [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Urban & Reg Ecol, Res Ctr Ecoenvironm Sc, Beijing 100085, Peoples R China
[2] US Forest Serv, Eastern Forest Environm Threat Assessment Ctr, USDA, So Res Stn, Raleigh, NC 27606 USA
[3] Beijing Normal Univ, Coll Global Change & Earth Syst, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
MEAN ANNUAL EVAPOTRANSPIRATION; AVERAGE ANNUAL STREAMFLOW; CLIMATE VARIABILITY; LAND-USE; AFFORESTATION; CATCHMENT; IMPACTS; SPLINES; RUNOFF; SCALE;
D O I
10.5194/hess-16-2617-2012
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The general relationships between vegetation and water yield under different climatic regimes are well established at a small watershed scale in the past century. However, applications of these basic theories to evaluate the regional effects of land cover change on water resources remain challenging due to the complex interactions of vegetation and climatic variability and hydrologic processes at the large scale. The objective of this study was to explore ways to examine the spatial and temporal effects of a large ecological restoration project on water yield across the Loess Plateau region in northern China. We estimated annual water yield as the difference between precipitation input and modelled actual evapotranspiration (ET) output. We constructed a monthly ET model using published ET data derived from eddy flux measurements and watershed streamflow data. We validated the ET models at a watershed and regional levels. The model was then applied to examine regional water yield under land cover change and climatic variability during the implementation of the Grain-for-Green (GFG) project during 1999-2007. We found that water yield in 38% of the Loess Plateau area might have decreased (1-48 mm per year) as a result of land cover change alone. However, combined with climatic variability, 37% of the study area might have seen a decrease in water yield with a range of 1-54 mm per year, and 35% of the study area might have seen an increase with a range of 1-10 mm per year. Across the study region, climate variability masked or strengthened the water yield response to vegetation restoration. The absolute annual water yield change due to vegetation restoration varied with precipitation regimes with the highest in wet years, but the relative water yield changes were most pronounced in dry years. We concluded that the effects of land cover change associated with ecological restoration varied greatly over time and space and were strongly influenced by climatic variability in the arid region. The current regional vegetation restoration projects have variable effects on local water resources across the region. Land management planning must consider the influences of spatial climate variability and long-term climate change on water yield to be more effective for achieving environmental sustainability.
引用
收藏
页码:2617 / 2628
页数:12
相关论文
共 41 条
[1]   Waters and forests:: from historical controversy to scientific debate [J].
Andréassian, V .
JOURNAL OF HYDROLOGY, 2004, 291 (1-2) :1-27
[2]   Effects of precipitation and landuse on runoff during the past 50 years in a typical watershed in the Loess Plateau, China [J].
Bi, Huaxing ;
Liu, Bin ;
Wu, Jie ;
Yun, Lei ;
Chen, Zhihan ;
Cui, Zhewei .
INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH, 2009, 24 (03) :352-364
[3]   A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation [J].
Brown, AE ;
Zhang, L ;
McMahon, TA ;
Western, AW ;
Vertessy, RA .
JOURNAL OF HYDROLOGY, 2005, 310 (1-4) :28-61
[4]  
Budyko M., 1974, CLIMATE LIFE
[5]   Impact of China's Grain for Green Project on the landscape of vulnerable arid and semi-arid agricultural regions: a case study in northern Shaanxi Province [J].
Cao, Shixiong ;
Chen, Li ;
Yu, Xinxiao .
JOURNAL OF APPLIED ECOLOGY, 2009, 46 (03) :536-543
[6]   Effects of landscape restoration on soil water storage and water use in the Loess Plateau Region, China [J].
Chen, Liding ;
Wang, Jiping ;
Wei, Wei ;
Fu, Bojie ;
Wu, Dongping .
FOREST ECOLOGY AND MANAGEMENT, 2010, 259 (07) :1291-1298
[7]   On the importance of including vegetation dynamics in Budyko's hydrological model [J].
Donohue, R. J. ;
Roderick, M. L. ;
McVicar, T. R. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2007, 11 (02) :983-995
[8]   PASTURE EVAPOTRANSPIRATION UNDER VARYING TREE PLANTING DENSITY IN AN AGROFORESTRY EXPERIMENT [J].
EASTHAM, J ;
ROSE, CW .
AGRICULTURAL WATER MANAGEMENT, 1988, 15 (01) :87-105
[9]   Climate impacts on European agriculture and water management in the context of adaptation and mitigation-The importance of an integrated approach [J].
Falloon, Pete ;
Betts, Richard .
SCIENCE OF THE TOTAL ENVIRONMENT, 2010, 408 (23) :5667-5687
[10]   Modeling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau [J].
Feng, Xiaoming ;
Wang, Yafeng ;
Chen, Liding ;
Fu, Bojie ;
Bai, Gangshuan .
GEOMORPHOLOGY, 2010, 118 (3-4) :239-248