Photoinduced Charge Transfer in Donor-Acceptor (DA) Copolymer: Fullerene Bis-adduct Polymer Solar Cells

被引:57
作者
Kang, Tae Eui [1 ]
Cho, Han-Hee [1 ]
Cho, Chul-Hee [1 ]
Kim, Ki-Hyun [1 ]
Kang, Hyunbum [1 ]
Lee, Myounghee [2 ]
Lee, Sunae [2 ]
Kim, BongSoo [3 ]
Im, Chan [2 ]
Kim, Bumjoon J. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea
[2] Konkuk Univ, Fraunhofer ISE Next Generat Solar Cell Res Ctr, Seoul 143701, South Korea
[3] Korea Inst Sci & Technol, Photoelect Hybrids Res Ctr, Seoul 136791, South Korea
关键词
photoinduced charge transfer; driving force for charge transfer (Delta G(CT)); donor-acceptor (DA) copolymer; fullerene bis-adduct; polymer solar cell; OPEN-CIRCUIT VOLTAGE; TRANSFER STATE; RECOMBINATION; PERFORMANCE; EFFICIENCY; TRANSPORT; BLENDS;
D O I
10.1021/am302479u
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polymer solar cells (PSCs) consisting of fullerene bis-adduct and poly(3-hexylthiophene) (P3HT) blends have shown higher efficiencies than P3HT:phenyl C-61-butyric acid methyl ester (PCBM) devices, because of the high-lying lowest unoccupied molecular orbital (LUMO) level of the fullerene bis-adducts. In contrast, the use of fullerene bis-adducts in donor-acceptor (DA) copolymer systems typically causes a decrease in the device's performance due to the decreased short-circuit current (J(SC)) and the fill factor (FF). However, the reason for such poor performance in DA copolymer:fullerene bis-adduct blends is not fully understood. In this work, bulk-heterojunction (BHJ)-type PSCs composed of three different electron donors with four different electron acceptors were chosen and compared. The three electron donors were (1) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl] (PBDTTPD), (2) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C), and (3) P3HT polymers. The four electron acceptors were (1) PCBM, (2) indene-C-60 monoadduct (ICMA), (3) indene-C-60 bis-adduct (ICBA), and (4) indene-C-60 tris-adduct (ICTA). To understand the difference in the performance of BHJ-type PSCs for the three different polymers in terms of the choice of fullerene acceptor, the structural, optical, and electrical properties of the blends were measured by the external quantum efficiency (EQE), photoluminescence, grazing incidence X-ray scattering, and transient absorption spectroscopy. We observed that while the molecular packing and optical properties cannot be the main reasons for the dramatic decrease in the PCE of the DA copolymers and ICBA, the value of the driving force for charge transfer (Delta G(CT)) is a key parameter for determining the change in J(SC) and device efficiency in the DA copolymer- and P3HT-based PSCs in terms of fullerene acceptor. The low EQE and Jsc in PBDTTPD and PBDTTT-C blended with ICBA and ICTA were attributed to an insufficient Delta G(CT) due to the higher LUMO levels of the fullerene multiadducts. Quantitative information on the efficiency of the charge transfer was obtained by comparing the polaron yield, lifetime, and exciton dissociation probability in the DA copolymer:fullerene acceptor films.
引用
收藏
页码:861 / 868
页数:8
相关论文
共 45 条
[1]   Charge Transport and Recombination in Low-Bandgap Bulk Heterojunction Solar Cell using Bis-adduct Fullerene [J].
Azimi, Hamed ;
Senes, Alessia ;
Scharber, Markus C. ;
Hingerl, Kurt ;
Brabec, Christoph J. .
ADVANCED ENERGY MATERIALS, 2011, 1 (06) :1162-1168
[2]   Processable Low-Bandgap Polymers for Photovoltaic Applications [J].
Boudreault, Pierre-Luc T. ;
Najari, Ahmed ;
Leclerc, Mario .
CHEMISTRY OF MATERIALS, 2011, 23 (03) :456-469
[3]   Molecular Understanding of Organic Solar Cells: The Challenges [J].
Bredas, Jean-Luc ;
Norton, Joseph E. ;
Cornil, Jerome ;
Coropceanu, Veaceslav .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1691-1699
[4]   Polymer solar cells with enhanced open-circuit voltage and efficiency [J].
Chen, Hsiang-Yu ;
Hou, Jianhui ;
Zhang, Shaoqing ;
Liang, Yongye ;
Yang, Guanwen ;
Yang, Yang ;
Yu, Luping ;
Wu, Yue ;
Li, Gang .
NATURE PHOTONICS, 2009, 3 (11) :649-653
[5]   The effect of side-chain length on regioregular poly[3-(4-n-alkyl) phenylthiophene]/PCBM and ICBA polymer solar cells [J].
Cho, Chul-Hee ;
Kim, Hyeong Jun ;
Kang, Hyunbum ;
Shin, Tae Joo ;
Kim, Bumjoon J. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (28) :14236-14245
[6]   Effect of Incorporated Nitrogens on the Planarity and Photovoltaic Performance of Donor-Acceptor Copolymers [J].
Cho, Han-Hee ;
Kang, Tae Eui ;
Kim, Ki-Hyun ;
Kang, Hyunbum ;
Kim, Hyeong Jun ;
Kim, Bumjoon J. .
MACROMOLECULES, 2012, 45 (16) :6415-6423
[7]   Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:2′,3′-d]silole Copolymer with a Power Conversion Efficiency of 7.3% [J].
Chu, Ta-Ya ;
Lu, Jianping ;
Beaupre, Serge ;
Zhang, Yanguang ;
Pouliot, Jean-Remi ;
Wakim, Salem ;
Zhou, Jiayun ;
Leclerc, Mario ;
Li, Zhao ;
Ding, Jianfu ;
Tao, Ye .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (12) :4250-4253
[8]   Charge Photogeneration in Low Band Gap Polyselenophene/Fullerene Blend Films [J].
Clarke, Tracey M. ;
Ballantyne, Amy M. ;
Tierney, Steve ;
Heeney, Martin ;
Duffy, Warren ;
McCulloch, Iain ;
Nelson, Jenny ;
Durrant, James R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (17) :8068-8075
[9]   Role of the Charge Transfer State in Organic Donor-Acceptor Solar Cells [J].
Deibel, Carsten ;
Strobel, Thomas ;
Dyakonov, Vladimir .
ADVANCED MATERIALS, 2010, 22 (37) :4097-4111
[10]   Simultaneous Open-Circuit Voltage Enhancement and Short-Circuit Current Loss in Polymer: Fullerene Solar Cells Correlated by Reduced Quantum Efficiency for Photoinduced Electron Transfer [J].
Di Nuzzo, Daniele ;
Wetzelaer, Gert-Jan A. H. ;
Bouwer, Ricardo K. M. ;
Gevaerts, Veronique S. ;
Meskers, Stefan C. J. ;
Hummelen, Jan C. ;
Blom, Paul W. M. ;
Janssen, Rene A. J. .
ADVANCED ENERGY MATERIALS, 2013, 3 (01) :85-94