Actin cable dynamics in budding yeast

被引:148
作者
Yang, HC [1 ]
Pon, LA [1 ]
机构
[1] Columbia Univ Coll Phys & Surg, Dept Anat & Cell Biol, New York, NY 10032 USA
关键词
D O I
10.1073/pnas.022462899
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Actin cables, bundles of actin filaments that align along the long axis of budding yeast, are crucial for establishment of cell polarity. We fused green fluorescent protein (GFP) to actin binding protein 140 (Abp140p) and visualized actin cable dynamics in living yeast. We detected two populations of actin cables: (1) bud-associated cables, which extend from the bud along the mother-bud axis, and (h) randomly oriented cables, which are relatively short. Time-lapse imaging of Abpl40p-GFP revealed an apparent increase in the length of bud-associated actin cables. Analysis of movement of Abpl40p-GFP fiduciary marks on bud-associated cables and fluorescence loss in photobleaching experiments revealed that this apparent elongation occurs by assembly of new material at the end of the cable within the bud and movement of the opposite end of the cable toward the tip of the mother cell distal to the bud. The rate of extension of the tip of an elongating actin cable is 0.29 0.08 mum/s. Latrunculin A (Lat-A) treatment completely blocked this process. We also observed movement of randomly oriented cables around the cortex of cells at a rate of 0.59 +/- 0.14 mum/s. Mild treatment with Lat-A did not affect the velocity of movement of randomly oriented cables. However, Lat-A treatment did increase the number of randomly oriented, motile cables per cell. Our observations suggest that establishment of bud-associated actin cables during the cell cycle is accomplished not by realignment of existing cables but by assembly of new cables within the bud or bud neck, followed by elongation.
引用
收藏
页码:751 / 756
页数:6
相关论文
共 29 条
[1]   RELATIONSHIP OF ACTIN AND TUBULIN DISTRIBUTION TO BUD GROWTH IN WILD-TYPE AND MORPHOGENETIC-MUTANT SACCHAROMYCES-CEREVISIAE [J].
ADAMS, AEM ;
PRINGLE, JR .
JOURNAL OF CELL BIOLOGY, 1984, 98 (03) :934-945
[2]   Three-dimensional imaging of the yeast actin cytoskeleton through the budding cell cycle [J].
Amberg, DC .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (12) :3259-3262
[3]   Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae [J].
Asakura, T ;
Sasaki, T ;
Nagano, F ;
Satoh, A ;
Obaishi, H ;
Nishioka, H ;
Imamura, H ;
Hotta, K ;
Tanaka, K ;
Nakanishi, H ;
Takai, Y .
ONCOGENE, 1998, 16 (01) :121-130
[4]   High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A [J].
Ayscough, KR ;
Stryker, J ;
Pokala, N ;
Sanders, M ;
Crews, P ;
Drubin, DG .
JOURNAL OF CELL BIOLOGY, 1997, 137 (02) :399-416
[5]   The yeast V159N actin mutant reveals roles for actin dynamics in vivo [J].
Belmont, LD ;
Drubin, DG .
JOURNAL OF CELL BIOLOGY, 1998, 142 (05) :1289-1299
[6]   BRAIN MYOSIN-V IS A 2-HEADED UNCONVENTIONAL MYOSIN WITH MOTOR-ACTIVITY [J].
CHENEY, RE ;
OSHEA, MK ;
HEUSER, JE ;
COELHO, MV ;
WOLENSKI, JS ;
ESPREAFICO, EM ;
FORSCHER, P ;
LARSON, RE ;
MOOSEKER, MS .
CELL, 1993, 75 (01) :13-23
[7]  
DeRosier DJ, 2000, J CELL BIOL, V148, P1
[8]   TROPOMYOSIN IS ESSENTIAL IN YEAST, YET THE TPM1 AND TPM2 PRODUCTS PERFORM DISTINCT FUNCTIONS [J].
DREES, B ;
BROWN, C ;
BARRELL, BG ;
BRETSCHER, A .
JOURNAL OF CELL BIOLOGY, 1995, 128 (03) :383-392
[9]   YEAST ACTIN-BINDING PROTEINS - EVIDENCE FOR A ROLE IN MORPHOGENESIS [J].
DRUBIN, DG ;
MILLER, KG ;
BOTSTEIN, D .
JOURNAL OF CELL BIOLOGY, 1988, 107 (06) :2551-2561
[10]   Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae [J].
Hill, KL ;
Catlett, NL ;
Weisman, LS .
JOURNAL OF CELL BIOLOGY, 1996, 135 (06) :1535-1549