Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Wind Power Forecasting in Portugal

被引:180
作者
Catalao, J. P. S. [1 ,2 ]
Pousinho, H. M. I. [1 ,2 ]
Mendes, V. M. F. [3 ]
机构
[1] Univ Beira Interior, P-6201001 Covilha, Portugal
[2] IST, Ctr Innovat Elect & Energy Engn, P-1049001 Lisbon, Portugal
[3] Inst Super Engn Lisboa, P-1950062 Lisbon, Portugal
关键词
Forecasting; fuzzy logic; neural networks; swarm optimization; wavelet transform; wind power; NEURAL-NETWORKS; SPEED; PREDICTION; COMBINATION; TRANSFORM; SYSTEM; MODEL;
D O I
10.1109/TSTE.2010.2076359
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The increased integration of wind power into the electric grid, as it occurs today in Portugal, poses new challenges due to its intermittency and volatility. Wind power forecasting plays a key role in tackling these challenges. A novel hybrid approach, combining wavelet transform, particle swarm optimization, and an adaptive-network-based fuzzy inference system, is proposed in this paper for short-term wind power forecasting in Portugal. A thorough comparison is carried out, taking into account the results obtained with seven other approaches. Finally, conclusions are duly drawn.
引用
收藏
页码:50 / 59
页数:10
相关论文
共 55 条
[1]   Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm [J].
Amjady, N. ;
Keynia, F. .
ENERGY, 2009, 34 (01) :46-57
[2]   Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method [J].
Amjady, Nima ;
Keynia, Farshid .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2008, 30 (09) :533-546
[3]   Applying Wavelets to Short-Term Load Forecasting Using PSO-Based Neural Networks [J].
Bashir, Z. A. ;
El-Hawary, M. E. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (01) :20-27
[4]   Entropy and Correntropy Against Minimum Square Error in Offline and Online Three-Day Ahead Wind Power Forecasting [J].
Bessa, Ricardo J. ;
Miranda, Vladimiro ;
Gama, Joao .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (04) :1657-1666
[5]  
Catalao JPS, 2009, ENG INTELL SYST ELEC, V17, P5, DOI 10.1109/ISAP.2009.5352853
[6]   Stochastic Optimization of Wind Turbine Power Factor Using Stochastic Model of Wind Power [J].
Chen, Peiyuan ;
Siano, Pierluigi ;
Bak-Jensen, Birgitte ;
Chen, Zhe .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2010, 1 (01) :19-29
[7]   Day-ahead electricity price forecasting using the wavelet transform and ARIMA models [J].
Conejo, AJ ;
Plazas, MA ;
Espínola, R ;
Molina, AB .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) :1035-1042
[8]   A review on the young history of the wind power short-term prediction [J].
Costa, Alexandre ;
Crespo, Antonio ;
Navarro, Jorge ;
Lizcano, Gil ;
Madsen, Henrik ;
Feitosa, Everaldo .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2008, 12 (06) :1725-1744
[9]   Detecting, categorizing and forecasting large romps in wind farm power output using meteorological observations and WPPT [J].
Cutler, Nicholas ;
Kay, Merlinde ;
Jacka, Kieran ;
Nielsen, Torben Skov .
WIND ENERGY, 2007, 10 (05) :453-470
[10]   A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation [J].
Damousis, IG ;
Alexiadis, MC ;
Theocharis, JB ;
Dokopoulos, PS .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2004, 19 (02) :352-361