The Development of a Universal In Silico Predictor of Protein-Protein Interactions

被引:28
作者
Valente, Guilherme T. [1 ]
Acencio, Marcio L. [2 ]
Martins, Cesar [1 ]
Lemke, Ney [2 ]
机构
[1] Univ Estadual Paulista, UNESP, Dept Morphol, Botucatu, SP, Brazil
[2] Univ Estadual Paulista, UNESP, Dept Phys & Biophys, Botucatu, SP, Brazil
来源
PLOS ONE | 2013年 / 8卷 / 05期
基金
巴西圣保罗研究基金会;
关键词
LINK-PREDICTION; INTEGRATION; PRINCIPLES; NETWORKS; FEATURES; SITES;
D O I
10.1371/journal.pone.0065587
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein-protein interactions (PPIs) are essential for understanding the function of biological systems and have been characterized using a vast array of experimental techniques. These techniques detect only a small proportion of all PPIs and are labor intensive and time consuming. Therefore, the development of computational methods capable of predicting PPIs accelerates the pace of discovery of new interactions. This paper reports a machine learning-based prediction model, the Universal In Silico Predictor of Protein-Protein Interactions (UNISPPI), which is a decision tree model that can reliably predict PPIs for all species (including proteins from parasite-host associations) using only 20 combinations of amino acids frequencies from interacting and non-interacting proteins as learning features. UNISPPI was able to correctly classify 79.4% and 72.6% of experimentally supported interactions and non-interacting protein pairs, respectively, from an independent test set. Moreover, UNISPPI suggests that the frequencies of the amino acids asparagine, cysteine and isoleucine are important features for distinguishing between interacting and non-interacting protein pairs. We envisage that UNISPPI can be a useful tool for prioritizing interactions for experimental validation.
引用
收藏
页数:11
相关论文
共 55 条
  • [1] Comprehensive statistical analysis of residues interaction specificity at protein-protein interfaces
    Anashkina, Anastasya
    Kuznetsov, Eugene
    Esipova, Natalia
    Tumanyan, Vladimir
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 67 (04) : 1060 - 1077
  • [2] PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS
    ANFINSEN, CB
    [J]. SCIENCE, 1973, 181 (4096) : 223 - 230
  • [3] [Anonymous], 2014, C4. 5: programs for machine learning
  • [4] Ongoing and future developments at the Universal Protein Resource
    Apweiler, Rolf
    Martin, Maria Jesus
    O'Donovan, Claire
    Magrane, Michele
    Alam-Faruque, Yasmin
    Antunes, Ricardo
    Barrell, Daniel
    Bely, Benoit
    Bingley, Mark
    Binns, David
    Bower, Lawrence
    Browne, Paul
    Chan, Wei Mun
    Dimmer, Emily
    Eberhardt, Ruth
    Fazzini, Francesco
    Fedotov, Alexander
    Foulger, Rebecca
    Garavelli, John
    Castro, Leyla Garcia
    Huntley, Rachael
    Jacobsen, Julius
    Kleen, Michael
    Laiho, Kati
    Legge, Duncan
    Lin, Quan
    Liu, Wudong
    Luo, Jie
    Orchard, Sandra
    Patient, Samuel
    Pichler, Klemens
    Poggioli, Diego
    Pontikos, Nikolas
    Pruess, Manuela
    Rosanoff, Steven
    Sawford, Tony
    Sehra, Harminder
    Turner, Edward
    Corbett, Matt
    Donnelly, Mike
    van Rensburg, Pieter
    Xenarios, Ioannis
    Bougueleret, Lydie
    Auchincloss, Andrea
    Argoud-Puy, Ghislaine
    Axelsen, Kristian
    Bairoch, Amos
    Baratin, Delphine
    Blatter, Marie-Claude
    Boeckmann, Brigitte
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 : D214 - D219
  • [5] Protein-protein interactions as a target for drugs in proteomics
    Archakov, AI
    Govorun, VM
    Dubanov, AV
    Ivanov, YD
    Veselovsky, AV
    Lewi, P
    Janssen, P
    [J]. PROTEOMICS, 2003, 3 (04) : 380 - 391
  • [6] Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces
    Aytuna, AS
    Gursoy, A
    Keskin, O
    [J]. BIOINFORMATICS, 2005, 21 (12) : 2850 - 2855
  • [7] BAHADUR RP, 2010, PROTEIN PROTEIN COMP, P25
  • [8] Kernel methods for predicting protein-protein interactions
    Ben-Hur, A
    Noble, WS
    [J]. BIOINFORMATICS, 2005, 21 : I38 - I46
  • [9] Predicting protein-protein interactions from primary structure
    Bock, JR
    Gough, DA
    [J]. BIOINFORMATICS, 2001, 17 (05) : 455 - 460
  • [10] Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350