Transfer of the solar signal from the stratosphere to the troposphere: Northern winter

被引:151
作者
Matthes, K
Kuroda, Y
Kodera, K
Langematz, U
机构
[1] Free Univ Berlin, Inst Meteorol, D-12165 Berlin, Germany
[2] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan
关键词
D O I
10.1029/2005JD006283
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The atmospheric response to the solar cycle has been previously investigated with the Freie Universitat Berlin Climate Middle Atmosphere Model (FUB-CMAM) using prescribed spectral solar UV and ozone changes as well as prescribed equatorial, QBO-like winds. The solar signal is transferred from the upper to the lower stratosphere through a modulation of the polar night jet and the Brewer-Dobson circulation. These model experiments are further investigated here to show the transfer of the solar signal from the lower stratosphere to the troposphere and down to the surface during Northern Hemisphere winter. Analysis focuses on the transition from significant stratospheric effects in October and November to significant tropospheric effects in December and January. The results highlight the importance of stratospheric circulation changes for the troposphere. Together with the poleward-downward movement of zonal wind anomalies and enhanced equatorward planetary wave propagation, an AO-like pattern develops in the troposphere in December and January during solar maximum. In the middle of November, one third of eddy-forced tropospheric mean meridional circulation and surface pressure tendency changes can be attributed to the stratosphere, whereas most of the polar surface pressure tendency changes from the end of November through the middle of December are related to tropospheric mechanical forcing changes. The weakening of the Brewer-Dobson circulation during solar maximum leads to dynamical heating in the tropical lower stratosphere, inducing circulation changes in the tropical troposphere and down to the surface that are strongest in January. The simulated tropospheric effects are identified as indirect effects from the stratosphere because the sea surface temperatures are identical in the solar maximum and minimum experiment. These results confirm those from other simplified model studies as well as results from observations.
引用
收藏
页数:10
相关论文
共 47 条
[1]   Stratospheric memory and skill of extended-range weather forecasts [J].
Baldwin, MP ;
Stephenson, DB ;
Thompson, DWJ ;
Dunkerton, TJ ;
Charlton, AJ ;
O'Neill, A .
SCIENCE, 2003, 301 (5633) :636-640
[2]   Stratospheric harbingers of anomalous weather regimes [J].
Baldwin, MP ;
Dunkerton, TJ .
SCIENCE, 2001, 294 (5542) :581-584
[3]  
BATES JR, 1981, J GEOPHYS RES, V104, P27321
[4]  
Black RX, 2004, J CLIMATE, V17, P3990, DOI 10.1175/1520-0442(2004)017<3990:DCSOTN>2.0.CO
[5]  
2
[6]   Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: Model and reanalysis [J].
Christiansen, B .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D21) :27307-27322
[7]   Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset [J].
Crooks, SA ;
Gray, LJ .
JOURNAL OF CLIMATE, 2005, 18 (07) :996-1015
[8]   Chemical and dynamical response to the 11-year variability of the solar irradiance simulated with a chemistry-climate model [J].
Egorova, T ;
Rozanov, E ;
Manzini, E ;
Haberreiter, M ;
Schmutz, W ;
Zubov, V ;
Peter, T .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (06) :1-4
[9]   Patterns of tropospheric response to solar variability [J].
Gleisner, H ;
Thejll, P .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (13) :44-1
[10]   A GCM study of climate change in response to the 11-year solar cycle [J].
Haigh, JD .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1999, 125 (555) :871-892