NMR studies of modified nasicon-like, lithium conducting solid electrolytes

被引:54
作者
Forsyth, M
Wong, S
Nairn, KM
Best, AS
Newman, PJ
MacFarlane, DR
机构
[1] Monash Univ, Dept Mat Engn, Melbourne, Vic 3168, Australia
[2] Monash Univ, Dept Chem, Melbourne, Vic 3168, Australia
关键词
lithium conductor; NASICON; solid electrolyte; solid state NMR; ionic conductivity;
D O I
10.1016/S0167-2738(99)00213-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Al-27, P-31 and Li-7 NMR measurements have been performed on lithium conducting ceramics based on the LiTi2(PO4)(3) structure with Al, V and Nb metal ions substituted for either Ti or P within the framework NASICON structure. The Al-27 magic angle spinning NMR measurements have revealed that, although Al is intended to substitute for octahedral Ti sites, additional substitution into tetrahedral environments (presumably phosphorous sites) occurs with increasing amount of Al addition. This tetrahedral substitution appears to occur more readily in the presence of vanadium, in Li1-xAlxTi2-x(PO4)(2.9)(VO4)(0.1), whereas similar niobium additions (in place of vanadium) appear to stifle tetrahedral substitution. Li-7 static NMR spectra reveal quadrupolar structure with C-q approximately 42 kHz, largely independent of substitution. Measurement of the Li-7 central transition linewidth at room temperature reveals a relatively mobile lithium species (300-900 Hz) with linewidth tending to decrease with Al substitution and increase with increasing V or Nb. This new structural information is discussed in the context of ionic conduction in these ceramics. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 13 条
[1]   Fast Li-circle plus conducting ceramic electrolytes [J].
Adachi, GY ;
Imanaka, N ;
Aono, H .
ADVANCED MATERIALS, 1996, 8 (02) :127-+
[2]   IONIC-CONDUCTIVITY OF THE LITHIUM TITANIUM PHOSPHATE (LI1+XALXTI2-X(PO4)3), (LI1+XSCXTI2-X(PO4)3), (LI1+XYXTI2-X(PO4)3), (LI1+XLAXTI2-X(PO4)3 SYSTEMS [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, GY .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (02) :590-591
[3]   ELECTRICAL-PROPERTIES OF SINTERED LITHIUM TITANIUM PHOSPHATE CERAMICS (LI1+XMXTI2-X(PO4)3, M-3+ = AL-3+, SC-3+, OR Y-3+) [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
CHEMISTRY LETTERS, 1990, (10) :1825-1828
[4]   THE ELECTRICAL-PROPERTIES OF CERAMIC ELECTROLYTES FOR LIMXTI2-X(PO4)3+YLI2O, M = GE, SN, HF, AND ZR SYSTEMS [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (07) :1827-1833
[5]  
BEST A, IN PRESS SOLID STATE
[6]  
Gromov OG, 1996, RUSS J APPL CHEM+, V69, P385
[7]   CRYSTAL-STRUCTURES AND CRYSTAL-CHEMISTRY IN SYSTEM NA1+XZR2SIXP3-XO12 [J].
HONG, HYP .
MATERIALS RESEARCH BULLETIN, 1976, 11 (02) :173-182
[8]   HIGH IONIC-CONDUCTIVITY IN LITHIUM LANTHANUM TITANATE [J].
INAGUMA, Y ;
CHEN, LQ ;
ITOH, M ;
NAKAMURA, T ;
UCHIDA, T ;
IKUTA, H ;
WAKIHARA, M .
SOLID STATE COMMUNICATIONS, 1993, 86 (10) :689-693
[9]  
KAWAI H, 1994, J ELECTROCHEM SOC, V141, P178
[10]   Solid state NMR characterization of lithium conducting ceramics [J].
Nairn, KM ;
Forsyth, M ;
Greville, M ;
MacFarlane, DR ;
Smith, ME .
SOLID STATE IONICS, 1996, 86-8 :1397-1402