Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth

被引:219
作者
Obata, Y
Kono, T
机构
[1] Tokyo Univ Agr, Dept Biosci, Setagaya Ku, Tokyo 1568502, Japan
[2] Gunma Univ, Ctr Gene Res, Gunma 3718511, Japan
关键词
D O I
10.1074/jbc.M108586200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Primary imprinting during gametogenesis governs the monoallelic expression/repression of imprinted genes in embryogenesis. Previously, we showed that maternal primary imprinting is disrupted in neonate-derived non-growing oocytes. Here, to investigate precisely when and in what order maternal primary imprinting progresses, we produced parthenogenetic embryos containing one genome from a non-growing or growth-stage oocyte from 1- to 20-day-old mice and one from a fully grown oocyte of adult mice. We used these embryos to analyze the expression of eight imprinted genes: Peg1/Mest, Peg3, Snrpn, Znf127, Ndn, Impact, Igf2r, and p57(KIP2). The results showed that the imprinting signals for each gene were not all imposed together at a specific time during oocyte growth but rather occurred throughout the period from primary to antral follicle stage oocytes. The developmental ability of the constructed parthenogenetic embryos was gradually reduced as the nuclear donor oocytes grew. These studies provide the first insight into the process of primary imprinting during oocyte growth.
引用
收藏
页码:5285 / 5289
页数:5
相关论文
共 39 条
[1]   Epigenetic modifications necessary for normal development are established during oocyte growth in mice [J].
Bao, SQ ;
Obata, Y ;
Carroll, J ;
Domeki, I ;
Kono, T .
BIOLOGY OF REPRODUCTION, 2000, 62 (03) :616-621
[2]   THE MOUSE INSULIN-LIKE GROWTH-FACTOR TYPE-2 RECEPTOR IS IMPRINTED AND CLOSELY LINKED TO THE TME LOCUS [J].
BARLOW, DP ;
STOGER, R ;
HERRMANN, BG ;
SAITO, K ;
SCHWEIFER, N .
NATURE, 1991, 349 (6304) :84-87
[3]   UBIQUITOUS EXPRESSION AND IMPRINTING OF SNRPN IN THE MOUSE [J].
BARR, JA ;
JONES, J ;
GLENISTER, PH ;
CATTANACH, BM .
MAMMALIAN GENOME, 1995, 6 (06) :405-407
[4]   PARENTAL IMPRINTING OF THE MOUSE H19 GENE [J].
BARTOLOMEI, MS ;
ZEMEL, S ;
TILGHMAN, SM .
NATURE, 1991, 351 (6322) :153-155
[5]   ROLE OF PATERNAL AND MATERNAL GENOMES IN MOUSE DEVELOPMENT [J].
BARTON, SC ;
SURANI, MAH ;
NORRIS, ML .
NATURE, 1984, 311 (5984) :374-376
[6]   The DNA methyltransferases of mammals [J].
Bestor, TH .
HUMAN MOLECULAR GENETICS, 2000, 9 (16) :2395-2402
[7]   Methylation-induced repression - Belts, braces, and chromatin [J].
Bird, AP ;
Wolffe, AP .
CELL, 1999, 99 (05) :451-454
[8]   THE ONTOGENY OF ALLELE-SPECIFIC METHYLATION ASSOCIATED WITH IMPRINTED GENES IN THE MOUSE [J].
BRANDEIS, M ;
KAFRI, T ;
ARIEL, M ;
CHAILLET, JR ;
MCCARREY, J ;
RAZIN, A ;
CEDAR, H .
EMBO JOURNAL, 1993, 12 (09) :3669-3677
[9]   Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster [J].
Caspary, T ;
Cleary, MA ;
Baker, CC ;
Guan, XJ ;
Tilghman, SM .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (06) :3466-3474
[10]   The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development [J].
Davis, TL ;
Yang, GJ ;
McCarrey, JR ;
Bartolomei, MS .
HUMAN MOLECULAR GENETICS, 2000, 9 (19) :2885-2894