Mechanism for Efficient Photoinduced Charge Separation at Disordered Organic Heterointerfaces

被引:97
作者
van Eersel, Harm [1 ]
Janssen, Rene A. J. [1 ]
Kemerink, Martijn [1 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
关键词
solar cells; charge transport; organic electronics; electronic processes; INTERNAL QUANTUM EFFICIENCY; HETEROJUNCTION SOLAR-CELLS; HOT EXCITON DISSOCIATION; PAIR DISSOCIATION; TRANSFER STATES; BINDING-ENERGY; RECOMBINATION; POLYMER; DEPENDENCE; PERFORMANCE;
D O I
10.1002/adfm.201200249
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the poor screening of the Coulomb potential in organic semiconductors, excitons can dissociate efficiently into free charges at a donoracceptor heterojunction, leading to application in organic solar cells. A kinetic Monte Carlo model that explains this high efficiency as a two-step process is presented. Driven by the band offset between donor and acceptor, one of the carriers first hops across the interface, forming a charge transfer (CT) complex. Since the electron and hole forming the CT complex have typically not relaxed within the disorder-broadened density of states (DOS), their remaining binding energy can be overcome by further relaxation in the DOS. The model only contains parameters that are determined from independent measurements and predicts dissociation yields in excess of 90% for a prototypical heterojunction. Field, temperature, and band offset dependencies are investigated and found to be in agreement with earlier experiments. Whereas the investigated heterojunctions have substantial energy losses associated with the dissociation process, these results suggest that it is possible to reach high dissociation yields at low energy loss.
引用
收藏
页码:2700 / 2708
页数:9
相关论文
共 64 条
[1]   YIELD OF GEMINATE PAIR DISSOCIATION IN AN ENERGETICALLY RANDOM HOPPING SYSTEM [J].
ALBRECHT, U ;
BASSLER, H .
CHEMICAL PHYSICS LETTERS, 1995, 235 (3-4) :389-393
[2]   Hot exciton dissociation in a conjugated polymer [J].
Arkhipov, VI ;
Emelianova, EV ;
Bässler, H .
PHYSICAL REVIEW LETTERS, 1999, 82 (06) :1321-1324
[3]   Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor? [J].
Arkhipov, VI ;
Heremans, P ;
Bässler, H .
APPLIED PHYSICS LETTERS, 2003, 82 (25) :4605-4607
[4]   Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells [J].
Blakesley, James C. ;
Neher, Dieter .
PHYSICAL REVIEW B, 2011, 84 (07)
[5]   Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder [J].
Bouhassoune, M. ;
van Mensfoort, S. L. M. ;
Bobbert, P. A. ;
Coehoorn, R. .
ORGANIC ELECTRONICS, 2009, 10 (03) :437-445
[6]   Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time [J].
Brabec, CJ ;
Zerza, G ;
Cerullo, G ;
De Silvestri, S ;
Luzzati, S ;
Hummelen, JC ;
Sariciftci, S .
CHEMICAL PHYSICS LETTERS, 2001, 340 (3-4) :232-236
[8]   Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells [J].
Burkhard, George F. ;
Hoke, Eric T. ;
Scully, Shawn R. ;
McGehee, Michael D. .
NANO LETTERS, 2009, 9 (12) :4037-4041
[9]   Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder [J].
Coehoorn, R ;
Pasveer, WF ;
Bobbert, PA ;
Michels, MAJ .
PHYSICAL REVIEW B, 2005, 72 (15)
[10]   Origin of the Efficient Polaron-Pair Dissociation in Polymer-Fullerene Blends [J].
Deibel, Carsten ;
Strobel, Thomas ;
Dyakonov, Vladimir .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)