High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor

被引:199
作者
Paegel, BM
Emrich, CA
Wedemayer, GJ
Scherer, JR
Mathies, RA [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA
关键词
D O I
10.1073/pnas.012608699
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High throughput DNA sequencing has been performed by using a microfabricated 96-channel radial capillary array electrophoresis (muCAE) microchannel plate detected by a 4-color rotary confocal fluorescence scanner. The microchannel plate features a novel injector for uniform sieving matrix loading as well as high resolution, tapered turns that provide an effective separation length of 15.9 cm on a compact 150-mm diameter wafer. Expanded common buffer chambers for the cathode, anode, and waste reservoirs are used to simplify electrode addressing and to counteract buffering capacity depletion arising from the high electrophoretic current. DNA sequencing data from 95 successful lanes out of 96 lanes run in parallel were batch-processed with BASEFINDER, producing an average read length of 430 bp (phred q greater than or equal to 20). Phred quality values were found to exceed 40 (0.01% probability of incorrectly calling a base) for over 80% of the read length. The muCAE system demonstrated here produces sequencing data at a rate of 1.7 kbp/min, a 5-fold increase over current commercial capillary array electrophoresis technology. Additionally, this system permits lower reagent volumes and lower sample concentrations, and it presents numerous possibilities for integrated sample preparation and handling. The unique capabilities of muCAE technology should make it the next generation, high performance DNA sequencing platform.
引用
收藏
页码:574 / 579
页数:6
相关论文
共 29 条
[1]  
ATKINS PW, 1994, PHYSICAL CHEM
[3]   New goals for the US Human Genome Project: 1998-2003 [J].
Collins, FS ;
Patrinos, A ;
Jordan, E ;
Chakravarti, A ;
Gesteland, R ;
Walters, L ;
Fearon, E ;
Hartwelt, L ;
Langley, CH ;
Mathies, RA ;
Olson, M ;
Pawson, AJ ;
Pollard, T ;
Williamson, A ;
Wold, B ;
Buetow, K ;
Branscomb, E ;
Capecchi, M ;
Church, G ;
Garner, H ;
Gibbs, RA ;
Hawkins, T ;
Hodgson, K ;
Knotek, M ;
Meisler, M ;
Rubin, GM ;
Smith, LM ;
Smith, RF ;
Westerfield, M ;
Clayton, EW ;
Fisher, NL ;
Lerman, CE ;
McInerney, JD ;
Nebo, W ;
Press, N ;
Valle, D .
SCIENCE, 1998, 282 (5389) :682-689
[4]  
Crabtree HJ, 2000, ELECTROPHORESIS, V21, P1329, DOI 10.1002/(SICI)1522-2683(20000401)21:7<1329::AID-ELPS1329>3.3.CO
[5]  
2-U
[6]   Dispersion sources for compact geometries on microchips [J].
Culbertson, CT ;
Jacobson, SC ;
Ramsey, JM .
ANALYTICAL CHEMISTRY, 1998, 70 (18) :3781-3789
[7]   Base-calling of automated sequencer traces using phred.: II.: Error probabilities [J].
Ewing, B ;
Green, P .
GENOME RESEARCH, 1998, 8 (03) :186-194
[8]   A software system for data analysis in automated DNA sequencing [J].
Giddings, MC ;
Severin, J ;
Westphall, M ;
Wu, JZ ;
Smith, LM .
GENOME RESEARCH, 1998, 8 (06) :644-665
[9]   MICROMACHINING A MINIATURIZED CAPILLARY ELECTROPHORESIS-BASED CHEMICAL-ANALYSIS SYSTEM ON A CHIP [J].
HARRISON, DJ ;
FLURI, K ;
SEILER, K ;
FAN, ZH ;
EFFENHAUSER, CS ;
MANZ, A .
SCIENCE, 1993, 261 (5123) :895-897
[10]   HIGH-PERFORMANCE ELECTROPHORESIS - ELIMINATION OF ELECTROENDOSMOSIS AND SOLUTE ADSORPTION [J].
HJERTEN, S .
JOURNAL OF CHROMATOGRAPHY, 1985, 347 (02) :191-198