Support Vector Machines Based Arabic Language Text Classification System: Feature Selection Comparative Study

被引:25
作者
Mesleh, Abdelwadood Moh'd [1 ]
机构
[1] Balqa Appl Univ, Dept Comp Engn, Fac Engn Technol, Amman, Jordan
来源
ADVANCES IN COMPUTER AND INFORMATIOM SCIENCES AND ENGINEERING | 2008年
关键词
D O I
10.1007/978-1-4020-8741-7_3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
feature selection (FS) is essential for effective and more accurate text classification (TC) systems. This paper investigates the effectiveness of five commonly used FS methods for our Arabic language TC System. Evaluation used an in-house collected Arabic TC corpus. The experimental results are presented in terms of macro-averaging precision, macro-averaging recall and macro-averaging F-1 measure.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [1] ALSHALABI R, 2006, P 4 INT MULT COMP SC, V4
  • [2] [Anonymous], J COMPUTER SCI, DOI DOI 10.3844/JCSSP.2023.20.56
  • [3] [Anonymous], 1997, Proceedings of the fourteenth international conference on machine learning, DOI DOI 10.1016/J.ESWA.2008.05.026
  • [4] Baeza-Yates R., 1999, Modern Information Retrieval, Book
  • [5] Integrating WordNet knowledge to supplement training data in semi-supervised agglomerative hierarchical clustering for text categorization
    Benkhalifa, M
    Mouradi, A
    Bouyakhf, H
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2001, 16 (08) : 929 - 947
  • [6] Selection of relevant features and examples in machine learning
    Blum, AL
    Langley, P
    [J]. ARTIFICIAL INTELLIGENCE, 1997, 97 (1-2) : 245 - 271
  • [7] Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
  • [8] CIRAVEGNA F, 2000, P PAIS 2000 PREST AP, P696
  • [9] Das S., 2001, P 18 INT C MACHINE L, P74, DOI DOI 10.5555/645530.658297
  • [10] Dash M., 1997, Intelligent Data Analysis, V1