Modeling precision treatment of breast cancer

被引:203
作者
Daemen, Anneleen [1 ,2 ]
Griffith, Obi L. [1 ,3 ,6 ]
Heiser, Laura M. [1 ,4 ]
Wang, Nicholas J. [1 ,4 ]
Enache, Oana M. [1 ]
Sanborn, Zachary [5 ]
Pepin, Francois [1 ]
Durinck, Steffen [1 ]
Korkola, James E. [1 ,4 ]
Griffith, Malachi [6 ]
Hur, Joe S. [7 ]
Huh, Nam [8 ]
Chung, Jongsuk [8 ]
Cope, Leslie [9 ]
Fackler, Mary Jo [9 ]
Umbricht, Christopher [9 ]
Sukumar, Saraswati [9 ]
Seth, Pankaj [10 ]
Sukhatme, Vikas P. [10 ]
Jakkula, Lakshmi R. [1 ]
Lu, Yiling [11 ]
Mills, Gordon B. [11 ]
Cho, Raymond J. [12 ]
Collisson, Eric A. [1 ,2 ]
van't Veer, Laura J. [2 ]
Spellman, Paul T. [1 ,3 ]
Gray, Joe W. [1 ,4 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Dept Canc & DNA Damage Responses, Berkeley, CA 94720 USA
[2] Univ Calif San Francisco, San Francisco, CA 94115 USA
[3] Oregon Hlth & Sci Univ, Dept Mol & Med Genet, Portland, OR 97239 USA
[4] Oregon Hlth & Sci Univ, Knight Canc Inst, Ctr Spatial Syst Biomed, Dept Biomed Engn, Portland, OR 97239 USA
[5] Five3 Genom, Santa Cruz, CA 95060 USA
[6] Washington Univ, Sch Med, Genome Inst, St Louis, MO 63105 USA
[7] Samsung Elect Headquarters, Seoul 137857, South Korea
[8] Samsung Adv Inst Technol, Emerging Technol Res Ctr, Kyonggi Do 446712, South Korea
[9] Johns Hopkins Univ, Sch Med, Dept Oncol, Baltimore, MD 21205 USA
[10] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Dept Med, Boston, MA 02215 USA
[11] Univ Texas MD Anderson Canc Ctr, Dept Syst Biol, Houston, TX 77030 USA
[12] Univ Calif San Francisco, Dept Dermatol, San Francisco, CA 94115 USA
来源
GENOME BIOLOGY | 2013年 / 14卷 / 10期
基金
美国国家卫生研究院;
关键词
MOLECULAR SUBTYPES; PHASE-II; INHIBITORS; CLASSIFICATION; CAPECITABINE; CHEMOTHERAPY; MULTICENTER; SENSITIVITY; PREDICTION; TAMOXIFEN;
D O I
10.1186/gb-2013-14-10-r110
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: First-generation molecular profiles for human breast cancers have enabled the identification of features that can predict therapeutic response; however, little is known about how the various data types can best be combined to yield optimal predictors. Collections of breast cancer cell lines mirror many aspects of breast cancer molecular pathobiology, and measurements of their omic and biological therapeutic responses are well-suited for development of strategies to identify the most predictive molecular feature sets. Results: We used least squares-support vector machines and random forest algorithms to identify molecular features associated with responses of a collection of 70 breast cancer cell lines to 90 experimental or approved therapeutic agents. The datasets analyzed included measurements of copy number aberrations, mutations, gene and isoform expression, promoter methylation and protein expression. Transcriptional subtype contributed strongly to response predictors for 25% of compounds, and adding other molecular data types improved prediction for 65%. No single molecular dataset consistently out-performed the others, suggesting that therapeutic response is mediated at multiple levels in the genome. Response predictors were developed and applied to TCGA data, and were found to be present in subsets of those patient samples. Conclusions: These results suggest that matching patients to treatments based on transcriptional subtype will improve response rates, and inclusion of additional features from other profiling data types may provide additional benefit. Further, we suggest a systems biology strategy for guiding clinical trials so that patient cohorts most likely to respond to new therapies may be more efficiently identified.
引用
收藏
页数:14
相关论文
共 38 条
[1]   I-SPY 2: An Adaptive Breast Cancer Trial Design in the Setting of Neoadjuvant Chemotherapy [J].
Barker, A. D. ;
Sigman, C. C. ;
Kelloff, G. J. ;
Hylton, N. M. ;
Berry, D. A. ;
Esserman, L. J. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2009, 86 (01) :97-100
[2]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[3]   ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks [J].
Bindea, Gabriela ;
Mlecnik, Bernhard ;
Hackl, Hubert ;
Charoentong, Pornpimol ;
Tosolini, Marie ;
Kirilovsky, Amos ;
Fridman, Wolf-Herman ;
Pages, Franck ;
Trajanoski, Zlatko ;
Galon, Jerome .
BIOINFORMATICS, 2009, 25 (08) :1091-1093
[4]  
Blum JL, 2001, CANCER, V92, P1759, DOI 10.1002/1097-0142(20011001)92:7<1759::AID-CNCR1691>3.0.CO
[5]  
2-A
[6]   Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer [J].
Blum, JL ;
Jones, SE ;
Buzdar, AU ;
LoRusso, PM ;
Kuter, I ;
Vogel, C ;
Osterwalder, B ;
Burger, HU ;
Brown, CS ;
Griffin, T .
JOURNAL OF CLINICAL ONCOLOGY, 1999, 17 (02) :485-493
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   A RANDOMIZED COMPARISON OF TAMOXIFEN WITH SURGICAL OOPHORECTOMY IN PREMENOPAUSAL PATIENTS WITH ADVANCED BREAST-CANCER [J].
BUCHANAN, RB ;
BLAMEY, RW ;
DURRANT, KR ;
HOWELL, A ;
PATERSON, AG ;
PREECE, PE ;
SMITH, DC ;
WILLIAMS, CJ ;
WILSON, RG .
JOURNAL OF CLINICAL ONCOLOGY, 1986, 4 (09) :1326-1330
[9]   Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease [J].
Cobleigh, MA ;
Vogel, CL ;
Tripathy, D ;
Robert, NJ ;
Scholl, S ;
Fehrenbacher, L ;
Wolter, JM ;
Paton, V ;
Shak, S ;
Lieberman, G ;
Slamon, DJ .
JOURNAL OF CLINICAL ONCOLOGY, 1999, 17 (09) :2639-2648
[10]   A pharmacogenomic method for individualized prediction of drug sensitivity [J].
Cohen, Adam L. ;
Soldi, Raffaella ;
Zhang, Haiyu ;
Gustafson, Adam M. ;
Wilcox, Ryan ;
Welm, Bryan E. ;
Chang, Jeffrey T. ;
Johnson, Evan ;
Spira, Avrum ;
Jeffrey, Stefanie S. ;
Bild, Andrea H. .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7