The MM, ME, ML, EL, EF and GMM approaches to estimation: a synthesis

被引:43
作者
Bera, AK
Bilias, Y
机构
[1] Univ Illinois, Dept Econ, Champaign, IL 61820 USA
[2] Univ Cyprus, Dept Econ, Nicosia 1678, Cyprus
关键词
Karl Pearson's goodness-of-fit statistics; entropy; method of moment; estimating function; likelihood; empirical likelihood; generalized method of moments; power divergence criterion; history of estimation;
D O I
10.1016/S0304-4076(01)00113-0
中图分类号
F [经济];
学科分类号
02 ;
摘要
The 20th century began on an auspicious statistical note with the publication of Karl Pearson's (Philos. Mag. Ser. 50 (1900) 157) goodness-of-fit test, which is regarded as one of the most important scientific breakthroughs. The basic motivation behind this test was to see whether an assumed probability model adequately described the data at hand. Pearson (Philos. Trans. Roy. Soc. London Ser. A 185 (1894) 71) also introduced a formal approach to statistical estimation through his method of moments (MM) estimation. Ronald A. Fisher, while he was a third year undergraduate at the Gonville and Caius College, Cambridge, suggested the maximum likelihood estimation (MLE) procedure as an alternative to Pearson's MM approach. In 1922 Fisher published a monumental paper that introduced such basic concepts as consistency, efficiency, sufficiency-and even the term "parameter" with its present meaning. Fisher (Philos. Trans. Roy. Soc. London Ser. A 222 (1922) 309) provided the analytical foundation of MLE and studied its efficiency relative to the MM estimator. Fisher (J. Roy. Statist. Soc. 87 (1924a) 442) established the asymptotic equivalence of minimum chi(2) and ML estimators and wrote in favor of using minimum chi(2) method rather than Pearson's MM approach. Recently, econometricians have round working under assumed likelihood functions restrictive, and have suggested using a generalized version of Pearson's MM approach, commonly known as the GMM estimation procedure as advocated in Hansen (Econometrica 50 (1982) 1029). Earlier, Godambe (Ann. Math. Statist. 31 (1960) 1208) and Durbin (J. Roy. Statist. Soc. Ser. B 22 (1960) 139) developed the estimating function (EF) approach to estimation that has been proven very useful for many statistical models. A fundamental result is that score is the optimum EF. Ferguson (Ann. Math. Statist. 29 (1958) 1046) considered an approach very similar to GMM and showed that estimation based on the Pearson chi(2) statistic is equivalent to efficient GMM. Golan et al. (Maximum Entropy Econometrics: Robust Estimation with Limited Data. Wiley, New York, 1996) developed entropy-based formulation that allowed them to solve a wide range of estimation and inference problems in econometrics. More recently, Imbens et al. (Econometrica 66 (1998) 333), Kitamura and Stutzer (Econometrica 65 (1997) 861) and Mittelhammer et al. (Econometric Foundations. Cambridge University Press, Cambridge, 2000) put GMM within the framework of empirical likelihood (EL) and maximum entropy (ME) estimation. It can be shown that many of these estimation techniques can be obtained as special cases of minimizing Cressie and Read (J. Roy. Statist. Sec. Ser. B 46 (1984) 440) power divergence criterion that comes directly from the Pearson (1900) chi(2) statistic. In this way we are able to assimilate a number of seemingly unrelated estimation techniques into a unified framework. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:51 / 86
页数:36
相关论文
共 114 条
[1]  
Aldrich J, 1997, STAT SCI, V12, P162
[2]  
[Anonymous], 1908, BIOMETRIKA, V6, P1
[3]  
[Anonymous], 1998, A History of Mathematical Statistics from 1750 to 1930
[4]  
[Anonymous], 1968, TOPICS REGRESSION AN
[5]  
[Anonymous], 1922, Philosophical Transactions of the Royal Society of London A, DOI [10.1098/rsta.1922.0009, DOI 10.1098/RSTA.1922.0009]
[6]  
[Anonymous], ANN STAT
[7]  
[Anonymous], USDA B
[8]   IMPLIED PROBABILITIES IN GMM ESTIMATORS [J].
BACK, K ;
BROWN, DP .
ECONOMETRICA, 1993, 61 (04) :971-975
[9]  
BENNETT TL, 1907, TECHNICAL LECT NATL, V4
[10]   Rao's score, Neyman's C(α) and Silvey's LM tests:: an essay on historical developments and some new results [J].
Bera, AK ;
Bilias, Y .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 97 (01) :9-44