A Planetary Boundary Layer Height Climatology Derived from ECMWF Reanalysis Data

被引:197
作者
von Engeln, Axel [1 ]
Teixeira, Joao [2 ]
机构
[1] EUMETSAT, D-64295 Darmstadt, Germany
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
基金
美国国家航空航天局;
关键词
Boundary layer; Cloud cover; Climatology; Reanalysis data; DEPTH; EVOLUTION;
D O I
10.1175/JCLI-D-12-00385.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A planetary boundary layer (PBL) height climatology from ECMWF reanalysis data is generated and analyzed. Different methods are first compared to derive PBL heights from atmospheric temperature, pressure, and relative humidity (RH), which mostly make use of profile gradients, for example, in RH, refractivity, and virtual or potential temperature. Three methods based on the vertical gradient of RH, virtual temperature, and potential temperature were selected for the climatology generation. The RH-based method appears to capture the inversion that caps the convective boundary layer very well as a result of its temperature and humidity dependence, while the temperature-based methods appear to capture the PBL better at high latitudes. A validation of the reanalysis fields with collocated radiosonde data shows generally good agreement in terms of mean PBL height and standard deviation for the RH-based method. The generated ECMWF-based PBL height climatology shows many of the expected climatological features, such as a fairly low PBL height near the west coast of continents where stratus clouds are found and PBL growth as the air is advected over warmer waters toward the tropics along the trade winds. Large seasonal and diurnal variations are primarily found over land. The PBL height can exceed 3 km, mostly over desert areas during the day, although large values can also be found in areas such as the ITCZ. The robustness of the statistics was analyzed by using information on the percentage of outliers. Here in particular, the sea-based PBL was found to be very stable.
引用
收藏
页码:6575 / 6590
页数:16
相关论文
共 38 条
[1]   Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles [J].
Ao, Chi O. ;
Waliser, Duane E. ;
Chan, Steven K. ;
Li, Jui-Lin ;
Tian, Baijun ;
Xie, Feiqin ;
Mannucci, Anthony J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[2]   Identification of atmospheric boundary layer height over a tropical station using high-resolution radiosonde refractivity profiles: Comparison with GPS radio occultation measurements [J].
Basha, Ghouse ;
Ratnam, M. Venkat .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[3]   Relative Short-Range Forecast Impact from Aircraft, Profiler, Radiosonde, VAD, GPS-PW, METAR, and Mesonet Observations via the RUC Hourly Assimilation Cycle [J].
Benjamin, Stanley G. ;
Jamison, Brian D. ;
Moninger, William R. ;
Sahm, Susan R. ;
Schwartz, Barry E. ;
Schlatter, Thomas W. .
MONTHLY WEATHER REVIEW, 2010, 138 (04) :1319-1343
[4]   Observations and simulations of receiver-induced refractivity biases in GPS radio occultation [J].
Beyerle, G. ;
Schmidt, T. ;
Wickert, J. ;
Heise, S. ;
Rothacher, M. ;
Koenig-Langlo, G. ;
Lauritsen, K. B. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D12)
[5]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[6]   Satellite remote sounding of atmospheric boundary layer temperature inversions over the subtropical eastern Pacific [J].
Fetzer, EJ ;
Teixeira, J ;
Olsen, ET ;
Fishbein, EF .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (17) :L171021-4
[7]   Estimating Atmospheric Boundary Layer Depth Using COSMIC Radio Occultation Data [J].
Guo, P. ;
Kuo, Y-H. ;
Sokolovskiy, S. V. ;
Lenschow, D. H. .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2011, 68 (08) :1703-1713
[8]   The stable atmospheric boundary layer over an Antarctic ice sheet [J].
Handorf, D ;
Foken, T ;
Kottmeier, C .
BOUNDARY-LAYER METEOROLOGY, 1999, 91 (02) :165-189
[9]  
Hoaglin D. C., 1983, Understanding robust and exploratory data analysis
[10]  
Janssen P., 2003, CY23R4 IFS ECMWF