Thin-film silicon solar cells with integrated silver nanoparticles

被引:76
作者
Moulin, E. [1 ]
Sukmanowski, J. [2 ]
Schulte, M. [1 ]
Gordijn, A. [1 ]
Royer, F. X. [3 ]
Stiebig, H. [1 ]
机构
[1] Res Ctr Juelich, Inst Energy Res Photovolta, D-52425 Julich, Germany
[2] Univ Saarland, Inst Expt Phys, D-66041 Saarbrucken, Germany
[3] Univ Metz, LPMD, F-57078 Metz, France
关键词
metallic nanoparticles; thin-film silicon; solar cell; absorption enhancement;
D O I
10.1016/j.tsf.2007.12.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thin-film silicon solar cells need efficient light absorption to achieve high efficiencies. The standard light trapping approach consists of a randomly textured transparent substrate and a highly reflective back contact. In this case, light scattering at the rough TCO-silicon interface leads to a prolonged absorption path and consequently to an increased short circuit current. In this study, we will discuss a new approach based on silver nanoparticles to improve the light absorption in the thin-film silicon solar cells. Raman and SNOM measurements and theoretical investigations on systems with metallic natioparticles indicate a strong increase of the electric field in their surrounding when they are irradiated by light. Moreover, nanoparticles with the proper diameter can enhance light scattering. In this study, we have investigated the influence of silver nanoparticles with different sizes on the optoelectronic properties of amorphous and microcrystalline silicon solar cells. The nanoparticles are located at the back contact of the thin-film solar cell deposited in a n-i-p layer sequence. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:6813 / 6817
页数:5
相关论文
共 19 条
[1]   Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles [J].
Derkacs, D. ;
Lim, S. H. ;
Matheu, P. ;
Mar, W. ;
Yu, E. T. .
APPLIED PHYSICS LETTERS, 2006, 89 (09)
[2]  
Dirix Y, 1999, ADV MATER, V11, P223, DOI 10.1002/(SICI)1521-4095(199903)11:3<223::AID-ADMA223>3.0.CO
[3]  
2-J
[4]   Plasmon localization and local field distribution in metal-dielectric films [J].
Genov, DA ;
Sarychev, AK ;
Shalaev, VM .
PHYSICAL REVIEW E, 2003, 67 (05) :10
[5]   Nanometer scale apertureless near field microscopy [J].
Grésillon, S ;
Ducourtieux, S ;
Lahrech, A ;
Aigouy, L ;
Rivoal, JC ;
Boccara, AC .
APPLIED SURFACE SCIENCE, 2000, 164 :118-123
[6]   Optical properties of thin-filin silicon solar cells with grating couplers [J].
Haase, C. ;
Stiebig, H. .
PROGRESS IN PHOTOVOLTAICS, 2006, 14 (07) :629-641
[7]   A unified view of propagating and localized surface plasmon resonance biosensors [J].
Haes, AJ ;
Van Duyne, RP .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2004, 379 (7-8) :920-930
[8]   Single molecule detection using surface-enhanced Raman scattering (SERS) [J].
Kneipp, K ;
Wang, Y ;
Kneipp, H ;
Perelman, LT ;
Itzkan, I ;
Dasari, R ;
Feld, MS .
PHYSICAL REVIEW LETTERS, 1997, 78 (09) :1667-1670
[9]  
MOULIN E, 2006, 21 EUR PHOT SOL EN C, P1724
[10]   Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J].
Nie, SM ;
Emery, SR .
SCIENCE, 1997, 275 (5303) :1102-1106