Thermochemistry of Paddle Wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1

被引:104
作者
Bhunia, Manas K. [1 ,2 ]
Hughes, James T. [1 ,2 ]
Fettinger, James C. [3 ]
Navrotsky, Alexandra [1 ,2 ]
机构
[1] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA
[2] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA
[3] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA
关键词
METAL-ORGANIC FRAMEWORKS; HYDROGEN STORAGE; WATER-ADSORPTION; CARBON-DIOXIDE; POROSITY; ENTHALPIES; COMBUSTION; CRYSTAL; COPPER; SITES;
D O I
10.1021/la4012839
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal organic framework (MOF) porosity relies upon robust metal-organic bonds to retain structural rigidity upon solvent removal. Both the as-synthesized and activated Cu and Zn polymorphs of HKUST-1 were studied by room temperature acid solution calorimetry. Their enthalpies of formation from dense assemblages (metal oxide (ZnO or CuO), trimesic acid (TMA), and N,N-dimethylformamide (DMF)) were calculated from the calorimetric data. The enthalpy of formation (Delta H-f) of the as-synthesized Cu-HKUST-H2O ([Cu(3)TMA(2)center dot 3H(2)O]center dot 5DMF) is -52.70 +/- 0.34 kJ per mole of Cu. The Delta H-f for Zn-HKUST-DMF ([Zn(3)TMA(2)center dot 3DMF]center dot 2DMF) is -54.22 +/- 0.57 kJ per mole of Zn. The desolvated Cu-HKUST-dg [Cu(3)TMA(2)] has a Delta H-f of 16.66 +/- 0.51 kJ/mol per mole Cu. The Delta H-f for Zn-HKUST-amorph [Zn(3)TMA(2)center dot 2DMF] is -3.57 +/- 0.21 kJ per mole of Zn. Solvent stabilizes the Cu-HKUST-H2O by -69.4 kJ per mole of Cu and Zn-HKUST-DMF by at least -50.7 kJ per mole of Zn. Such strong chemisorption of solvent is similar in magnitude to the strongly exothermic binding at low coverage for chemisorbed H2O on transition metal oxide nanoparticle surfaces. The strongly exothermic solvent-framework interaction suggests that solvent can play a critical role in obtaining a specific secondary building unit (SBU) topology.
引用
收藏
页码:8140 / 8145
页数:6
相关论文
共 45 条
[1]   REMEASUREMENT OF STRUCTURE OF HEXAGONAL ZNO [J].
ABRAHAMS, SC ;
BERNSTEIN, JL .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1969, B 25 :1233-+
[2]   A REFINEMENT OF CRYSTAL STRUCTURE OF COPPER(2) OXIDE WITH A DISCUSSION OF SOME EXCEPTIONAL ESDS [J].
ASBRINK, S ;
NORRBY, LJ .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1970, B 26 :8-&
[3]   Metal-Organic Framework Thin Films: From Fundamentals to Applications [J].
Betard, Angelique ;
Fischer, Roland A. .
CHEMICAL REVIEWS, 2012, 112 (02) :1055-1083
[4]   Orbital directing effects in copper and zinc based paddle-wheel metal organic frameworks: the origin of flexibility [J].
Bureekaew, Sareeya ;
Amirjalayer, Saeed ;
Schmid, Rochus .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (20) :10249-10254
[5]  
Charlton M., 2001, POSITRON PHYS
[6]   A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J].
Chui, SSY ;
Lo, SMF ;
Charmant, JPH ;
Orpen, AG ;
Williams, ID .
SCIENCE, 1999, 283 (5405) :1148-1150
[7]   Engineering Metal Organic Frameworks for Heterogeneous Catalysis [J].
Corma, A. ;
Garcia, H. ;
Llabres i Xamena, F. X. L. I. .
CHEMICAL REVIEWS, 2010, 110 (08) :4606-4655
[8]  
Cox J. D., 1989, CODATA KEY VALUES TH
[9]   Luminescent Functional Metal-Organic Frameworks [J].
Cui, Yuanjing ;
Yue, Yanfeng ;
Qian, Guodong ;
Chen, Banglin .
CHEMICAL REVIEWS, 2012, 112 (02) :1126-1162
[10]   Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites [J].
Dinca, Mircea ;
Dailly, Anne ;
Liu, Yun ;
Brown, Craig M. ;
Neumann, Dan. A. ;
Long, Jeffrey R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (51) :16876-16883