Anomalies and analytic torsion on hyperbolic manifolds

被引:1
作者
Bytsenko, AA
Gonçalves, AE
Simoes, M
Williams, FL
机构
[1] Univ Estadual Londrina, Dept Fis, Londrina, Brazil
[2] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
关键词
D O I
10.1063/1.532949
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The global additive and multiplicative properties of the Laplacian on j-forms and related zeta functions are analyzed. The explicit form of zeta functions on a product of closed oriented hyperbolic manifolds Gamma\H-d and of the multiplicative anomaly are derived. We also calculate in an explicit form the analytic torsion associated with a connected sum of such manifolds. (C) 1999 American Institute of Physics. [S0022-2488(99)01407-3].
引用
收藏
页码:4119 / 4133
页数:15
相关论文
共 56 条
[1]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[2]  
Besse A.L., 1987, EINSTEIN MANIFOLDS
[3]  
BISMUT JM, 1992, ASTERISQUE, V0205
[4]  
Buchbinder IL., 1992, Effective action in quantum gravity
[5]   THE CONFORMAL ANOMALY IN N-DIMENSIONAL SPACES HAVING A HYPERBOLIC SPATIAL SECTION [J].
BYTSENKO, AA ;
ELIZALDE, E ;
ODINTSOV, SD .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (09) :5084-5090
[6]   The conformal anomaly in general rank 1 symmetric spaces and associated operator product [J].
Bytsenko, AA ;
Goncalves, AE ;
Williams, FL .
MODERN PHYSICS LETTERS A, 1998, 13 (02) :99-108
[7]   Zeta functions on a product of Einstein manifolds, and the multiplicative anomaly [J].
Bytsenko, AA ;
Williams, FL .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (02) :1075-1086
[8]   The conformal anomaly associated with an operator product acting in rank 1 symmetric spaces [J].
Bytsenko, AA ;
Goncalves, AE ;
Williams, FL .
JETP LETTERS, 1998, 67 (03) :176-181
[9]   Torsion on hyperbolic manifolds and the semiclassical limit for Chern-Simons theory [J].
Bytsenko, AA ;
Goncalves, AE ;
Da Cruz, W .
MODERN PHYSICS LETTERS A, 1998, 13 (30) :2453-2461
[10]   Ray-Singer torsion for a hyperbolic 3-manifold and asymptotics of Chern-Simons-Witten invariant [J].
Bytsenko, AA ;
Vanzo, L ;
Zerbini, S .
NUCLEAR PHYSICS B, 1997, 505 (03) :641-659