MMPBSA.py: An Efficient Program for End-State Free Energy Calculations

被引:3304
作者
Miller, Bill R., III [1 ]
McGee, T. Dwight, Jr. [1 ]
Swails, Jason M. [1 ]
Homeyer, Nadine [2 ]
Gohlke, Holger [2 ]
Roitberg, Adrian E. [1 ]
机构
[1] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA
[2] Univ Dusseldorf, Dept Math & Nat Sci, Inst Pharmaceut & Med Chem, D-40225 Dusseldorf, Germany
基金
美国国家科学基金会;
关键词
MOLECULAR-MECHANICS; CONTINUUM SOLVENT; BINDING; DOCKING; QM/MM; DNA;
D O I
10.1021/ct300418h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MM-PBSA is a post-processing end-state method to calculate free energies of molecules in solution. MMPBSA.py is a program written in Python for streamlining end-state free energy calculations using ensembles derived from molecular dynamics (MD) or Monte Carlo (MC) simulations. Several implicit solvation models are available with MMPBSA.py, including the Poisson-Boltzmann Model, the Generalized Born Model, and the Reference Interaction Site Model. Vibrational frequencies may be calculated using normal mode or quasi-harmonic analysis to approximate the solute entropy. Specific interactions can also be dissected using free energy decomposition or alanine scanning. A parallel implementation significantly speeds up the calculation by dividing frames evenly across available processors. MMPBSA.py is an efficient, user-friendly program with the flexibility to accommodate the needs of users performing end-state free energy calculations. The source code can be downloaded at http://ambermd.org/ with AmberTools, released under the GNU General Public License.
引用
收藏
页码:3314 / 3321
页数:8
相关论文
共 37 条
[1]  
[Anonymous], 2014, AMBER
[2]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[3]   HARMONIC-ANALYSIS OF LARGE SYSTEMS .1. METHODOLOGY [J].
BROOKS, BR ;
JANEZIC, D ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (12) :1522-1542
[4]   Free energy calculations of protein-ligand interactions [J].
de Ruiter, Anita ;
Oostenbrink, Chris .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2011, 15 (04) :547-552
[5]   GROUND-STATES OF MOLECULES .38. MNDO METHOD - APPROXIMATIONS AND PARAMETERS [J].
DEWAR, MJS ;
THIEL, W .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :4899-4907
[6]   THE DEVELOPMENT AND USE OF QUANTUM-MECHANICAL MOLECULAR-MODELS .76. AM1 - A NEW GENERAL-PURPOSE QUANTUM-MECHANICAL MOLECULAR-MODEL [J].
DEWAR, MJS ;
ZOEBISCH, EG ;
HEALY, EF ;
STEWART, JJP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (13) :3902-3909
[7]   An MM/3D-RISM Approach for Ligand Binding Affinities [J].
Genheden, Samuel ;
Luchko, Tyler ;
Gusarov, Sergey ;
Kovalenko, Andriy ;
Ryde, Ulf .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (25) :8505-8516
[8]   How to Obtain Statistically Converged MM/GBSA Results [J].
Genheden, Samuel ;
Ryde, Ulf .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (04) :837-846
[9]   QM/MM As a Tool in Fragment Based Drug Discovery. A Cross-Docking, Rescoring Study of Kinase Inhibitors [J].
Gleeson, M. Paul ;
Gleeson, Duangkamol .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (06) :1437-1448
[10]   Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RaIGDS complexes [J].
Gohlke, H ;
Kiel, C ;
Case, DA .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 330 (04) :891-913