Genetic and nongenetic determinants of skeletal muscle glucose transporter 4 messenger ribonucleic acid levels and insulin action in twins

被引:13
作者
Storgaard, H
Poulsen, P
Ling, C
Groop, L
Vaag, AA
机构
[1] Steno Diabet Ctr, DK-2820 Gentofte, Denmark
[2] Odense Univ Hosp, Diabet Res Ctr, Dept Endocrinol, DK-5000 Odense, Denmark
[3] Lund Univ, Dept Endocrinol, Univ Hosp MAS, Wallenberg Lab, S-20502 Malmo, Sweden
关键词
D O I
10.1210/jc.2005-1172
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Context: Insulin-stimulated glucose uptake in skeletal muscle is mediated through translocation of the insulin-sensitive glucose transporter 4 ( GLUT4)-containing vesicles to the plasma membrane. Thus, skeletal muscle GLUT4 content plays an important role in whole-body insulin sensitivity. Objectives: The objectives of this study were 1) to examine the relative impact of genetic vs. environmental factors on skeletal muscle GLUT4 mRNA expression using biometric modeling, and 2) to identify factors influencing the expression of GLUT4 and insulin-stimulated whole-body metabolism. Design: We measured GLUT4 mRNA expression in biopsies from young and elderly monozygotic (MZ) and dizygotic (DZ) twins before and during a 2-h hyperinsulinemic euglycemic clamp including 3-H-3-tritiated glucose and indirect calorimetry. Participants: A random sample of young (22-31 yr; n = 89) and elderly (57 - 66 yr; n = 69) same sex MZ and DZ twin pairs identified through the Danish Twin Register were studied. Results: We found a major genetic component in the control of basal and insulin-stimulated GLUT4 mRNA expression in young and elderly twins. GLUT4 gene expression increased upon insulin stimulation in both young and elderly twins. Multiple regression analysis revealed that both basal and insulin-stimulated GLUT4 mRNA expressions were positively related to birth weight and total body aerobic capacity and were higher in MZ vs. DZ twins as well as in males vs. females. Both basal and insulin-stimulated expressions of GLUT4 were independently and significantly related to whole-body in vivo insulin action, nonoxidative glucose metabolism, and glucose oxidation. Conclusion: We show that skeletal muscle GLUT4 gene expression in twins is significantly and independently related to glucose metabolism and is determined by both genetic and nongenetic factors, including zygosity and birth weight.
引用
收藏
页码:702 / 708
页数:7
相关论文
共 47 条
[1]   Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver [J].
Abel, ED ;
Peroni, O ;
Kim, JK ;
Kim, YB ;
Boss, O ;
Hadro, E ;
Minnemann, T ;
Shulman, GI ;
Kahn, BB .
NATURE, 2001, 409 (6821) :729-733
[2]   EXPRESSION OF THE MAJOR INSULIN-REGULATABLE GLUCOSE-TRANSPORTER (GLUT4) IN SKELETAL-MUSCLE OF NONINSULIN-DEPENDENT DIABETIC-PATIENTS AND HEALTHY-SUBJECTS BEFORE AND AFTER INSULIN INFUSION [J].
ANDERSEN, PH ;
LUND, S ;
VESTERGAARD, H ;
JUNKER, S ;
KAHN, BB ;
PEDERSEN, O .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1993, 77 (01) :27-32
[3]   Fetal origins of adult disease:: strength of effects and biological basis [J].
Barker, DJP ;
Eriksson, JG ;
Forsén, T ;
Osmond, C .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2002, 31 (06) :1235-1239
[4]   POLYMORPHISMS AT THE GLUT1 (HEPG2) AND GLUT4 (MUSCLE ADIPOCYTE) GLUCOSE TRANSPORTER GENES AND NON-INSULIN-DEPENDENT DIABETES-MELLITUS (NIDDM) [J].
BARONI, MG ;
OELBAUM, RS ;
POZZILLI, P ;
STOCKS, J ;
LI, SR ;
FIORE, V ;
GALTON, DJ .
HUMAN GENETICS, 1992, 88 (05) :557-561
[5]   Glucose transport and GLUT4 protein distribution in skeletal muscle of GLUT4 transgenic mice [J].
Brozinick, JT ;
Yaspelkis, BB ;
Wilson, CM ;
Grant, KE ;
Gibbs, M ;
Cushman, SW ;
Ivy, JL .
BIOCHEMICAL JOURNAL, 1996, 313 :133-140
[6]   HUMAN GLUT4 MUSCLE-FAT GLUCOSE-TRANSPORTER GENE - CHARACTERIZATION AND GENETIC-VARIATION [J].
BUSE, JB ;
YASUDA, K ;
LAY, TP ;
SEO, TS ;
OLSON, AL ;
PESSIN, JE ;
KARAM, JH ;
SEINO, S ;
BELL, GI .
DIABETES, 1992, 41 (11) :1436-1445
[7]   A region on chromosome 3 is linked to dizygotic twinning [J].
Busjahn, A ;
Knoblauch, H ;
Faulhaber, HD ;
Aydin, A ;
Uhlmann, R ;
Tuomilehto, J ;
Kaprio, J ;
Jedrusik, P ;
Januszewicz, A ;
Strelau, J ;
Schuster, H ;
Luft, FC ;
Müller-Myhsok, B .
NATURE GENETICS, 2000, 26 (04) :398-399
[8]   THE EFFECT OF INSULIN ON THE DISPOSAL OF INTRAVENOUS GLUCOSE - RESULTS FROM INDIRECT CALORIMETRY AND HEPATIC AND FEMORAL VENOUS CATHETERIZATION [J].
DEFRONZO, RA ;
JACOT, E ;
JEQUIER, E ;
MAEDER, E ;
WAHREN, J ;
FELBER, JP .
DIABETES, 1981, 30 (12) :1000-1007
[9]   Regulation by insulin of gene expression in human skeletal muscle and adipose tissue - Evidence for specific defects in type 2 diabetes [J].
Ducluzeau, PH ;
Perretti, N ;
Laville, M ;
Andreelli, F ;
Vega, N ;
Riou, JP ;
Vidal, H .
DIABETES, 2001, 50 (05) :1134-1142
[10]   Mutation analysis of peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus [J].
Ek, J ;
Andersen, G ;
Urhammer, SA ;
Gæde, PH ;
Drivsholm, T ;
Borch-Johnsen, K ;
Hansen, T ;
Pedersen, O .
DIABETOLOGIA, 2001, 44 (12) :2220-2226