A folk theorem for one-shot Bertrand games

被引:41
作者
Baye, MR
Morgan, J
机构
[1] Indiana Univ, Kelley Sch Business, Bloomington, IN 47405 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
关键词
folk theorem; Bertrand paradox;
D O I
10.1016/S0165-1765(99)00118-4
中图分类号
F [经济];
学科分类号
02 ;
摘要
We show that bounded monopoly profits are essential for the uniqueness of the Bertrand paradox (zero profit) outcome. Otherwise, a folk theorem obtains for one-shot homogeneous product Bertrand games: any positive (but finite) payoff vector can be achieved in a symmetric mixed-strategy Nash equilibrium. (C) 1999 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 5 条
[1]   THE FOLK THEOREM IN REPEATED GAMES WITH DISCOUNTING OR WITH INCOMPLETE INFORMATION [J].
FUDENBERG, D ;
MASKIN, E .
ECONOMETRICA, 1986, 54 (03) :533-554
[2]  
Gabszewicz JJ., 1992, HDB GAME THEORY, P281, DOI [10.1016/S1574-0005(05)80012-8, DOI 10.1016/S1574-0005(05)80012-8]
[3]   A REEVALUATION OF PERFECT COMPETITION AS THE SOLUTION TO THE BERTRAND PRICE GAME [J].
HARRINGTON, JE .
MATHEMATICAL SOCIAL SCIENCES, 1989, 17 (03) :315-328
[4]  
KAPLAN T, 1997, UNPUB MIXED STRATEGY
[5]  
MAGNAN J, 1992, HIST POLIT ECON, V24, P623