Strong impact of neutrals on anomalous inward drift and width of steep gradient zone

被引:10
作者
Becker, G [1 ]
机构
[1] Euratom IPP Assoc, Max Planck Inst Plasmaphys, Garching, Germany
关键词
D O I
10.1088/0029-5515/39/1/306
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The fundamental properties of the anomalous inward drift and the width of the steep gradient zone in H mode plasmas are explored. A special version of the 1.5-D BALDUR transport code is used to determine the profiles of the electron beat diffusivity and upsilon(in)/D by transport analysis. The strong rise with radius of upsilon(in)/D in the edge region is explained by a linear dependence on the neutral deuterium density n(0), resulting in a new scaling expression upsilon(in)(x)/D(x) = F-0 Z(eff) (x)n(0)(2)2x/(rho(w)x(s)(2)). Applying this in simulations reproduces the empirical fit of the upsilon(in)/D profile not only in the edge plasma but also in the bulk plasma, Modellings with this scaling yield the observed flattening of density profiles with rising line averaged density. The decreasing penetration of deuterium atoms to the core causes a decline of the inward drift. The new scaling is shown to be compatible with gas oscillation experiments, while no-independent scalings are not. This further explains the strong density profile peaking and rise of upsilon(in)/D during and after pellet injection by the increase in neutral density. The width of the steep gradient zone is found to be connected with the penetration of neutrals at the edge and the presence of high inward drift velocities. The anomalous inward drift is attributed to ion dynamics, i.e. to the friction between fluctuating deuterons and deuterium atoms diffusing inward. A more general upsilon(in)/D scaling including impurity effects is presented.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 21 条
[1]   Recent DIII-D divertor research [J].
Allen, SL ;
Bozek, AS ;
Brooks, NH ;
Buchenauer, DA ;
Burrell, KH ;
Carlstrom, TN ;
Cuthbertson, JW ;
Deboo, JC ;
Ellis, R ;
Evans, JC ;
Evans, TE ;
Fenstermacher, ME ;
Geer, RW ;
Ghendrih, P ;
Groebner, RJ ;
Hill, DN ;
Hillis, DL ;
Hogan, JT ;
Hollerbach, MA ;
Holtrop, KL ;
Hsieh, CL ;
Hyatt, AW ;
Jackson, GL ;
James, RA ;
Johnson, WR ;
Jong, R ;
Junge, R ;
Klepper, CC ;
Lasnier, CJ ;
Laughon, GJ ;
Leonard, AW ;
Mahdavi, MA ;
Maingi, R ;
Menon, MM ;
Mioduszewski, PK ;
Moyer, RA ;
Meyer, WH ;
Nilson, DG ;
Osborne, TH ;
Overskei, DO ;
Owen, LW ;
Petrie, TW ;
Phelps, DA ;
Porter, GD ;
Rensink, ME ;
Sager, GT ;
Schaffer, MJ ;
Schaubel, KM ;
Simonen, TC ;
Smith, JP .
PLASMA PHYSICS AND CONTROLLED FUSION, 1995, 37 :A191-A202
[2]  
BATEMAN G, 1993, COMMUNICATION
[3]   Linear Z(eff) scaling of the anomalous inward drift and enhanced proportionality factor during neon inflow [J].
Becker, G .
NUCLEAR FUSION, 1996, 36 (12) :1751-1758
[4]   SIMULATION OF TRANSPORT IN THE IGNITED ITER WITH 1.5-D PREDICTIVE CODE [J].
BECKER, G .
NUCLEAR FUSION, 1995, 35 (01) :39-58
[5]   Empirical scaling law for the effective heat diffusivity in ELMy H mode plasmas [J].
Becker, G .
NUCLEAR FUSION, 1996, 36 (04) :527-530
[6]  
BECKER G, 1997, CONTROLLED FUSIO A 4, V21, P1433
[7]  
BECKER G, 1998, IN PRESS CONTROLLE A, V22
[8]  
Braginskii S. I., 1965, REV PLASMA PHYS, V1, P205, DOI DOI 10.1088/0741-3335/47/10/005
[9]   Role of neutrals in the phase transition model [J].
Carreras, BA ;
Diamond, PH ;
Vetoulis, G .
PHYSICS OF PLASMAS, 1996, 3 (11) :4106-4114
[10]   MODEL FOR PARTICLE-TRANSPORT IN HIGH-DENSITY PLASMAS [J].
COPPI, B ;
SHARKY, N .
NUCLEAR FUSION, 1981, 21 (11) :1363-1382