Inhibition of catalase by antisense RNA increases susceptibility to oxidative stress and chilling injury in transgenic tomato plants

被引:39
作者
Kerdnaimongkol, K [1 ]
Woodson, WR [1 ]
机构
[1] Purdue Univ, Dept Hort & Landscape Architecture, W Lafayette, IN 47907 USA
关键词
catalase; chilling injury; Lycopersicon esculentum; hydrogen peroxide;
D O I
10.21273/JASHS.124.4.330
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Transgenic tomatoes (Lycopersicon esculentum Mill. 'Ohio 8245') expressing an antisense catalase gene (ASTOMCAT1) were used to test the hypothesis that modification of the reactive oxygen species scavenging mechanism in plants can lead to changes in oxidative stress tolerance. A 2- to 8-fold reduction in total catalase activity was detected in the leaf extracts of transformants. A 2-fold increase in levels of H2O2 was observed in the transgenic plants with reduced catalase activity. Electrophoretic characterization of multiple catalase isoforms revealed the specific suppression of CATI in transgenic plants. Homozygous plants carrying the antisense catalase transgene were used to study the effect of alteration in the expression of catalase on stress tolerance. Transgenic plants treated with 3% H2O2 showed visible damage within 24 hours and subsequently died. In contrast, wild-type and azygous control plants recovered from the treatment. Transgenic plants did not survive 4 degrees C chilling stress compared to control wild-type and azygous lines. Physiological analysis of these plants indicated that suppression of catalase activity in transgenic tomato led to enhanced sensitivity to oxidative stress. Our data support a role for catalase in oxidative stress defense system in tomato.
引用
收藏
页码:330 / 336
页数:7
相关论文
共 48 条
[1]   REDOX REGULATION OF FOS AND JUN DNA-BINDING ACTIVITY INVITRO [J].
ABATE, C ;
PATEL, L ;
RAUSCHER, FJ ;
CURRAN, T .
SCIENCE, 1990, 249 (4973) :1157-1161
[2]   DISSECTION OF OXIDATIVE STRESS TOLERANCE USING TRANSGENIC PLANTS [J].
ALLEN, RD .
PLANT PHYSIOLOGY, 1995, 107 (04) :1049-1054
[3]   RESISTANCE TO ACTIVE OXYGEN-TOXICITY OF TRANSGENIC NICOTIANA-TABACUM THAT EXPRESSES THE GENE FOR GLUTATHIONE-REDUCTASE FORM ESCHERICHIA-COLI [J].
AONO, M ;
KUBO, A ;
SAJI, H ;
NATORI, T ;
TANAKA, K ;
KONDO, N .
PLANT AND CELL PHYSIOLOGY, 1991, 32 (05) :691-697
[4]   SUPEROXIDE-DISMUTASE AND STRESS TOLERANCE [J].
BOWLER, C ;
VANMONTAGU, M ;
INZE, D .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1992, 43 :83-116
[5]   MANGANESE SUPEROXIDE-DISMUTASE CAN REDUCE CELLULAR-DAMAGE MEDIATED BY OXYGEN RADICALS IN TRANSGENIC PLANTS [J].
BOWLER, C ;
SLOOTEN, L ;
VANDENBRANDEN, S ;
DERYCKE, R ;
BOTTERMAN, J ;
SYBESMA, C ;
VANMONTAGU, M ;
INZE, D .
EMBO JOURNAL, 1991, 10 (07) :1723-1732
[6]   Manipulation of catalase levels produces altered photosynthesis in transgenic tobacco plants [J].
Brisson, LF ;
Zelitch, I ;
Havir, EA .
PLANT PHYSIOLOGY, 1998, 116 (01) :259-269
[7]   OXIDATIVE STRESS RESPONSES IN TRANSGENIC TOBACCO CONTAINING ALTERED LEVELS OF GLUTATHIONE-REDUCTASE ACTIVITY [J].
BROADBENT, P ;
CREISSEN, GP ;
KULAR, B ;
WELLBURN, AR ;
MULLINEAUX, PM .
PLANT JOURNAL, 1995, 8 (02) :247-255
[8]   Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light [J].
Chamnongpol, S ;
Willekens, H ;
Langebartels, C ;
VanMontagu, M ;
Inze, D ;
VanCamp, W .
PLANT JOURNAL, 1996, 10 (03) :491-503
[9]  
Dellaporta S.L., 1983, Plant Molecular Biology Reporter, V1, P19, DOI DOI 10.1007/BF02712670
[10]   MOLECULAR-CLONING AND NUCLEOTIDE-SEQUENCE OF A CDNA-ENCODING CATALASE FROM TOMATO [J].
DRORY, A ;
WOODSON, WR .
PLANT PHYSIOLOGY, 1992, 100 (03) :1605-1606