Van der Waals Coefficients for Nanostructures: Fullerenes Defy Conventional Wisdom

被引:64
作者
Ruzsinszky, Adrienn [1 ]
Perdew, John P. [1 ]
Tao, Jianmin [1 ]
Csonka, Gabor I. [2 ]
Pitarke, J. M. [3 ,4 ,5 ]
机构
[1] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA
[2] Budapest Univ Technol & Econ, Dept Inorgan & Analyt Chem, H-1521 Budapest, Hungary
[3] CIC NanoGUNE Consolider, E-20018 Donostia San Sebastian, Basque Country, Spain
[4] DIPC, E-48080 Bilbao, Basque Country, Spain
[5] Ctr Fis Mat CSIC UPV EHU, E-48080 Bilbao, Basque Country, Spain
基金
美国国家科学基金会;
关键词
LONDON;
D O I
10.1103/PhysRevLett.109.233203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The van der Waals coefficients between quasispherical nanostructures can be modeled accurately and analytically by those of classical solid spheres (for nanoclusters) or spherical shells (for fullerenes) of uniform valence electron density, with the true static dipole polarizability. Here, we derive analytically and confirm numerically from this model the size dependencies of the van der Waals coefficients of all orders, showing, for example, that the asymptotic dependence for C-6 is the expected n(2) for pairs of nanoclusters A(n)-A(n), each containing n atoms, but n(2.75) for pairs of single-walled fullerenes C-n-C-n. Large fullerenes are argued to have much larger polarizabilities and dispersion coefficients than those predicted by either the standard atom pair-potential model or widely used nonlocal van der Waals correlation energy functionals.
引用
收藏
页数:5
相关论文
共 27 条
[1]   THE INFLUENCE OF RETARDATION ON THE LONDON-VANDERWAALS FORCES [J].
CASIMIR, HBG ;
POLDER, D .
PHYSICAL REVIEW, 1948, 73 (04) :360-372
[2]   Nanoscale van der Waals interactions [J].
Cole, Milton W. ;
Velegol, Darrell ;
Kim, Hye-Young ;
Lucas, Amand A. .
MOLECULAR SIMULATION, 2009, 35 (10-11) :849-866
[3]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1
[4]   Asymptotics of the dispersion interaction: Analytic benchmarks for van der Waals energy functionals [J].
Dobson, JF ;
White, A ;
Rubio, A .
PHYSICAL REVIEW LETTERS, 2006, 96 (07)
[5]   Density functional theory with London dispersion corrections [J].
Grimme, Stefan .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (02) :211-228
[6]   Quantum size effects in the polarizability of carbon fullerenes -: art. no. 215501 [J].
Gueorguiev, GK ;
Pacheco, JM ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2004, 92 (21) :215501-1
[7]   The London - Van Der Waals attraction between spherical particles [J].
Hamaker, HC .
PHYSICA, 1937, 4 :1058-1072
[8]   THEORY OF NONUNIFORM ELECTRONIC SYSTEMS .1. ANALYSIS OF THE GRADIENT APPROXIMATION AND A GENERALIZATION THAT WORKS [J].
LANGRETH, DC ;
PERDEW, JP .
PHYSICAL REVIEW B, 1980, 21 (12) :5469-5493
[9]   Higher-accuracy van der Waals density functional [J].
Lee, Kyuho ;
Murray, Eamonn D. ;
Kong, Lingzhu ;
Lundqvist, Bengt I. ;
Langreth, David C. .
PHYSICAL REVIEW B, 2010, 82 (08)
[10]   NEW MODEL DIELECTRIC FUNCTION AND EXCHANGE-CORRELATION POTENTIAL FOR SEMICONDUCTORS AND INSULATORS [J].
LEVINE, ZH ;
LOUIE, SG .
PHYSICAL REVIEW B, 1982, 25 (10) :6310-6316