Near-Infrared Emitting Fluorophore-Doped Calcium Phosphate Nanoparticles for In Vivo Imaging of Human Breast Cancer

被引:369
作者
Altinoglu, Erhan i. [1 ]
Russin, Timothy J. [2 ]
Kaiser, James M. [3 ]
Barth, Brian M. [3 ]
Eklund, Peter C. [1 ,2 ]
Kester, Mark [3 ]
Adair, James H. [1 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[3] Penn State Univ, Coll Med, Dept Pharmacol, Hershey, PA 17033 USA
关键词
calcium phosphate; indocyanine green; nanoparticles; encapsulation; near-infrared; bioimaging; EPR effect; photophysics; whole animal imaging;
D O I
10.1021/nn800448r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Early detection is a crucial element for the timely diagnosis and successful treatment of all human cancers but is limited by the sensitivity of current imaging methodologies. We have synthesized and studied bioresorbable calcium phosphate nanoparticles (CPNPs) in which molecules of the near-infrared (NIR) emitting fluorophore, indocyanine green (ICG), are embedded. The ICG-CPNPs demonstrate exceptional colloidal and optical characteristics. Suspensions consisting of 16 nm average diameter particles are colloidally stable in physiological solutions (phosphate buffered 0.15 M saline (PBS), pH 7.4) with carboxylate or polyethylene glycol (PEG) surface functionality. ICG-doped CPNPs exhibit significantly greater intensity at the maximum emission wavelength relative to the free constituent fluorophore, consistent with the multiple molecules encapsulated per particle. The quantum efficiency per molecule of the ICG-CPNPs is 200% greater at 0.049 +/- 0.003 over the free fluorophore in PBS. Photostability based on fluorescence half-life of encapsulated ICG in PBS is 500% longer under typical clinical imaging conditions relative to the free dye. PEGylated ICG-CPNPs accumulate in solid, 5 mm diameter xenograft breast adenocarcinoma tumors via enhanced retention and permeability (EPR) within 24 h after systemic tail vein injection in a nude mouse model. Ex situ tissue imaging further verifies the facility of the ICG-CPNPs for deep-tissue imaging with NIR signals detectable from depths up to 3 cm in porcine muscle tissue. Our ex vivo and in vivo experiments verify the promise of the NIR CPNPs for diagnostic imaging in the early detection of solid tumors.
引用
收藏
页码:2075 / 2084
页数:10
相关论文
共 88 条
[1]  
ADAIR JH, 2004, P WORLD AC CER CES I
[2]   THE NATURE OF THE SILICA CAGE AS REFLECTED BY SPECTRAL CHANGES AND ENHANCED PHOTOSTABILITY OF TRAPPED RHODAMINE-6G [J].
AVNIR, D ;
LEVY, D ;
REISFELD, R .
JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (24) :5956-5959
[3]   Noninvasive imaging of quantum dots in mice [J].
Ballou, B ;
Lagerholm, BC ;
Ernst, LA ;
Bruchez, MP ;
Waggoner, AS .
BIOCONJUGATE CHEMISTRY, 2004, 15 (01) :79-86
[4]   Preparation and flow cytometry of uniform silica-fluorescent dye microspheres [J].
Bele, M ;
Siiman, O ;
Matijevic, E .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2002, 254 (02) :274-282
[5]   FLUORESCENCE PROPERTIES OF INDOCYANINE GREEN AS RELATED TO ANGIOGRAPHY [J].
BENSON, RC ;
KUES, HA .
PHYSICS IN MEDICINE AND BIOLOGY, 1978, 23 (01) :159-163
[6]   pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery [J].
Bisht, S ;
Bhakta, G ;
Mitra, S ;
Maitra, A .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2005, 288 (01) :157-168
[7]   Advances in contrast agents, reporters, and detection [J].
Bornhop, DJ ;
Contag, CH ;
Licha, K ;
Murphy, CJ .
JOURNAL OF BIOMEDICAL OPTICS, 2001, 6 (02) :106-110
[8]   Core/shell fluorescent silica nanopartictes for chemical sensing: Towards single-particle laboratories [J].
Burns, A ;
Sengupta, P ;
Zedayko, T ;
Baird, B ;
Wiesner, U .
SMALL, 2006, 2 (06) :723-726
[9]  
CAESAR J, 1961, CLIN SCI, V21, P43
[10]   Evaluation of quantum dot cytotoxicity based on intracellular uptake [J].
Chang, Emmanuel ;
Thekkek, Nadhi ;
Yu, William W. ;
Colvin, Vicki L. ;
Drezek, Rebekah .
SMALL, 2006, 2 (12) :1412-1417