Expression of inducible nitric oxide synthase and enzymes of arginine metabolism in Fusarium kyushuense-exposed mouse lung

被引:8
作者
Mahmoud, YAG
Harada, K
Nagasaki, A
Gotoh, T
Takeya, M
Salimuddin
Ueda, A
Mori, M [1 ]
机构
[1] Kumamoto Univ, Sch Med, Dept Mol Genet, Kumamoto 8600811, Japan
[2] Kumamoto Univ, Sch Med, Dept Hyg, Kumamoto 8600811, Japan
[3] Kumamoto Univ, Sch Med, Dept Pathol, Kumamoto 8600811, Japan
来源
NITRIC OXIDE-BIOLOGY AND CHEMISTRY | 1999年 / 3卷 / 04期
关键词
Fusarium kyushuense; nitric oxide; iNOS; CAT2; argininosuccinate synthetase; arginase I; arginase II;
D O I
10.1006/niox.1999.0241
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Expression of inducible nitric oxide (NO) synthase (iNOS) and related enzymes of arginine metabolism in the mouse lung exposed to filamentous fungus Fusarium kyushuense was studied by RNA blot, immunoblot, and histological analyses. When mice were exposed intranasally to the fungi only once, no induction of iNOS mRNA was observed. However, when the animals were infected again 6 days after the first exposure, iNOS mRNA was induced, reached a maximum 12-24 h after the exposure, and decreased to an undetectable level at 48 h. mRNAs for cationic amino acid transporter-a (CAT2) and argininosuccinate synthetase were induced gradually, reached a maximum at 24 h, and decreased at 48 h. Arginase II mRNA increased at 24 h and decreased markedly at 48 h. On the other hand, arginase I mRNA started to increase at 24 h and reached to a much higher level at 48 h. Ornithine decarboxylase and ornithine aminotransferase mRNAs were also induced. Immunoblot analysis showed that iNOS, argininosuccinate synthetase, and arginase I and II proteins were induced with similar kinetics as those of their respective mRNAs. In histological examination, fungal elements were observed in the bronchoalveolar lumen at 3-6 h, decreased at 12 h, and almost disappeared at 48 h. Small granuloma appeared 3 h after the infection and their size increased with time. These results suggest that NO is produced in the mouse lung in response to F. kyushuense exposure and that the NO production is regulated by CAT2, the citrulline-NO cycle, and arginase isoforms. Enhanced synthesis of polyamines and proline land thus collagen) is also suggested, (C) 1999 Academic Press.
引用
收藏
页码:302 / 311
页数:10
相关论文
共 39 条
[1]   L-ARGININE TRANSPORT IS INCREASED IN MACROPHAGES GENERATING NITRIC-OXIDE [J].
BOGLE, RG ;
BAYDOUN, AR ;
PEARSON, JD ;
MONCADA, S ;
MANN, GE .
BIOCHEMICAL JOURNAL, 1992, 284 :15-18
[2]   Arginase activity in endothelial cells: Inhibition by N-G-hydroxy-L-arginine during high-output NO production [J].
Buga, GM ;
Singh, R ;
Pervin, S ;
Rogers, NE ;
Schmitz, DA ;
Jenkinson, CP ;
Cederbaum, SD ;
Ignarro, LJ .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1996, 271 (05) :H1988-H1998
[3]   Arginase modulates nitric oxide production in activated macrophages [J].
Chang, CI ;
Liao, JC ;
Kuo, L .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1998, 274 (01) :H342-H348
[4]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[5]   Nitric oxide in excitable tissues: Physiological roles and disease [J].
Christopherson, KS ;
Bredt, DS .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (10) :2424-2429
[6]   Mechanisms of nitric oxide-related antimicrobial activity [J].
Fang, FC .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (12) :2818-2825
[7]   Interleukin-1 beta and tumor necrosis factor-alpha stimulate the cat-2 gene of the L-arginine transporter in cultured vascular smooth muscle cells [J].
Gill, DJ ;
Low, BC ;
Grigor, MR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (19) :11280-11283
[8]   Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 cells [J].
Gotoh, T ;
Mori, M .
JOURNAL OF CELL BIOLOGY, 1999, 144 (03) :427-434
[9]   Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line [J].
Gotoh, T ;
Sonoki, T ;
Nagasaki, A ;
Terada, K ;
Takiguchi, M ;
Mori, M .
FEBS LETTERS, 1996, 395 (2-3) :119-122
[10]   Interferon-gamma is necessary for the expression of hypersensitivity pneumonitis [J].
Gudmundsson, G ;
Hunninghake, GW .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (10) :2386-2390