Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis

被引:182
作者
Altis, Alexandros [1 ]
Otten, Moritz [1 ]
Nguyen, Phuong H. [1 ]
Hegger, Rainer [1 ]
Stock, Gerhard [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, D-60438 Frankfurt, Germany
关键词
D O I
10.1063/1.2945165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A systematic approach to construct a low-dimensional free energy landscape from a classical molecular dynamics (MD) simulation is presented. The approach is based on the recently proposed dihedral angle principal component analysis (dPCA), which avoids artifacts due to the mixing of internal and overall motions in Cartesian coordinates and circumvents problems associated with the circularity of angular variables. Requiring that the energy landscape reproduces the correct number, energy, and location of the system's metastable states and barriers, the dimensionality of the free energy landscape (i.e., the number of essential components) is obtained. This dimensionality can be determined from the distribution and autocorrelation of the principal components. By performing an 800 ns MD simulation of the folding of hepta-alanine in explicit water and using geometric and kinetic clustering techniques, it is shown that a five-dimensional dPCA energy landscape is a suitable and accurate representation of the full-dimensional landscape. In the second step, the dPCA energy landscape can be employed (e.g., in a Langevin simulation) to facilitate a detailed investigation of biomolecular dynamics in low dimensions. Finally, several ways to visualize the multidimensional energy landscape are discussed. (c) 2008 American Institute of Physics.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Dihedral angle principal component analysis of molecular dynamics simulations [J].
Altis, Alexandros ;
Nguyen, Phuong H. ;
Hegger, Rainer ;
Stock, Gerhard .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (24)
[2]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[3]   From topographies to dynamics on multidimensional potential energy surfaces of atomic clusters [J].
Ball, KD ;
Berry, RS ;
Kunz, RE ;
Li, FY ;
Proykova, A ;
Wales, DJ .
SCIENCE, 1996, 271 (5251) :963-966
[4]  
Becker OM, 1997, PROTEINS, V27, P213, DOI 10.1002/(SICI)1097-0134(199702)27:2<213::AID-PROT8>3.0.CO
[5]  
2-G
[6]   The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics [J].
Becker, OM ;
Karplus, M .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (04) :1495-1517
[7]  
Berendsen H. J. C., 1981, INTERMOLECULAR FORCE, P331, DOI [DOI 10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658-1_21]
[8]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[9]   Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics [J].
Chodera, John D. ;
Singhal, Nina ;
Pande, Vijay S. ;
Dill, Ken A. ;
Swope, William C. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (15)
[10]   Long-time protein folding dynamics from short-time molecular dynamics simulations [J].
Chodera, John D. ;
Swope, William C. ;
Pitera, Jed W. ;
Dill, Ken A. .
MULTISCALE MODELING & SIMULATION, 2006, 5 (04) :1214-1226