Bias in GEE estimates from misspecified models for longitudinal data

被引:6
作者
Emond, MJ
Ritz, J
Oakes, D
机构
[1] UNIV WASHINGTON, DEPT BIOSTAT, SEATTLE, WA 98195 USA
[2] UNIV ROCHESTER, DEPT BIOSTAT, ROCHESTER, NY 14642 USA
[3] UNIV ROCHESTER, DEPT STAT, ROCHESTER, NY 14642 USA
关键词
generalized estimating equations; conditional model; misspecification; marginal model;
D O I
10.1080/03610929708831899
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the use of Generalized Estimating Equations (GEEs) for estimation of regression parameters from longitudinal series. Let Y-it be the outcome for the i(th) series at time t and let X(i) = (X(il),...,X(ini))' be covariate vectors associated with n(i) observation times. We investigate bias of GEE estimates for population-average (PA) and conditional parameters under model misspecification which takes the form of omission of past history from the model for Y-it\X(i). We provide exact bias results for the identity link, a bias approximation for nonlinear links and simulation results. Bias for either parameter can be positive or negative and depends on the size of the series and the strength of association between observations at times t and t - 1.
引用
收藏
页码:15 / 32
页数:18
相关论文
共 13 条
[1]   CONDITIONAL LOGISTIC-REGRESSION MODELS FOR CORRELATED BINARY DATA [J].
CONNOLLY, MA ;
LIANG, KY .
BIOMETRIKA, 1988, 75 (03) :501-506
[2]  
GAIL MH, 1984, BIOMETRIKA, V71, P431
[3]   PSEUDO MAXIMUM-LIKELIHOOD METHODS - THEORY [J].
GOURIEROUX, C ;
MONFORT, A ;
TROGNON, A .
ECONOMETRICA, 1984, 52 (03) :681-700
[4]   LONGITUDINAL DATA-ANALYSIS USING GENERALIZED LINEAR-MODELS [J].
LIANG, KY ;
ZEGER, SL .
BIOMETRIKA, 1986, 73 (01) :13-22
[5]  
McCullagh P., 1989, GEN LINEAR MODELS, DOI [DOI 10.1007/978-1-4899-3242-6, 10.1201/9780203753736, DOI 10.2307/2347392]
[6]   A CAUTIONARY NOTE ON INFERENCE FOR MARGINAL REGRESSION-MODELS WITH LONGITUDINAL DATA AND GENERAL CORRELATED RESPONSE DATA [J].
PEPE, MS ;
ANDERSON, GL .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1994, 23 (04) :939-951
[7]   CORRELATED BINARY REGRESSION WITH COVARIATES SPECIFIC TO EACH BINARY OBSERVATION [J].
PRENTICE, RL .
BIOMETRICS, 1988, 44 (04) :1033-1048
[8]   MARGINAL MODELS FOR CORRELATED BINARY RESPONSES WITH MULTIPLE CLASSES AND MULTIPLE LEVELS OF NESTING [J].
QAQISH, BF ;
LIANG, KY .
BIOMETRICS, 1992, 48 (03) :939-950
[9]   MULTIVARIATE METHODS FOR CLUSTERED BINARY DATA WITH MORE THAN ONE LEVEL OF NESTING [J].
ROSNER, B .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (406) :373-380
[10]   ANALYSIS OF REPEATED ORDERED CATEGORICAL OUTCOMES WITH POSSIBLY MISSING OBSERVATIONS AND TIME-DEPENDENT COVARIATES [J].
STRAM, DO ;
WEI, LJ ;
WARE, JH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :631-637