Field validation of the droplet aerosol analyser

被引:10
作者
Cederfelt, SI
Martinsson, BG
Svenningsson, B
Weidensohler, A
Frank, G
Hansson, HC
Swietlicki, E
Wendish, M
Beswick, KM
Bower, KN
Gallagher, MW
Pahl, S
Maser, R
Schell, D
机构
[1] LUND UNIV,DIV NUCL PHYS,S-22100 LUND,SWEDEN
[2] INST TROPOSPHER RES,D-04303 LEIPZIG,GERMANY
[3] UNIV MANCHESTER,INST SCI & TECHNOL,DEPT PHYS,MANCHESTER M60 1QD,LANCS,ENGLAND
[4] METEOROL OBSERV HAMBURG,DEUTSCH WETTERDIENST,D-22361 HAMBURG,GERMANY
[5] UNIV FRANKFURT,ZENTRUM UMWELTFORSCH,D-60325 FRANKFURT,GERMANY
基金
英国自然环境研究理事会;
关键词
cloud; intercomparison; size distribution; nucleation scavenging; liquid water concentration;
D O I
10.1016/S1352-2310(96)00183-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A new instrument for the study of cloud droplets and its relation to aerosol particles, the droplet aerosol analyser (DDA), was for the first time used in a field campaign. The DAA has the unique feature of measuring the ambient size of cloud droplets or cloud interstitial aerosol particles together with the size of its dry residue. This is obtained with a two-parameter data acquisition technique which results in a three-dimensional data set (ambient size, dry residue size, number concentration). The principle and design of the DAA is briefly described. The DAA was intercompared with differential mobility particle sizers, particulate volume monitors and a forward scattering spectrometer probe with respect to interstitial and cloud droplet dry residue size distribution as well as particle-size-dependent scavenging due to cloud droplet nucleation and for cloud droplet number concentration and size distribution and cloud liquid water concentration. Overall, the DAA showed good agreement with respect to all these six aerosol/cloud properties. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:2657 / 2670
页数:14
相关论文
共 28 条
[1]   COMPARISON OF TECHNIQUES FOR MEASUREMENTS OF FOG LIQUID WATER-CONTENT [J].
ARENDS, BG ;
KOS, GPA ;
WOBROCK, W ;
SCHELL, D ;
NOONE, KJ ;
FUZZI, S .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1992, 44 (05) :604-611
[2]  
BOWER KN, 1993, Q J ROY METEOR SOC, V119, P655, DOI 10.1002/qj.49711951204
[3]   The Great Dun Fell Cloud Experiment 1993: An overview [J].
Choularton, TW ;
Colvile, RN ;
Bower, KN ;
Gallagher, MW ;
Wells, M ;
Beswick, KM ;
Arends, BG ;
Mols, JJ ;
Kos, GPA ;
Fuzzi, S ;
Lind, JA ;
Orsi, G ;
Facchini, MC ;
Laj, P ;
Gieray, R ;
Wieser, P ;
Engelhardt, T ;
Berner, A ;
Kruisz, C ;
Moller, D ;
Acker, K ;
Wieprecht, W ;
Luttke, J ;
Levsen, K ;
Bizjak, M ;
Hansson, HC ;
Cederfelt, SI ;
Frank, G ;
Mentes, B ;
Martinsson, B ;
Orsini, D ;
Svenningsson, B ;
Swietlicki, E ;
Wiedensohler, A ;
Noone, KJ ;
Pahl, S ;
Winkler, P ;
Seyffer, E ;
Helas, G ;
Jaeschke, W ;
Georgii, HW ;
Wobrock, W ;
Preiss, M ;
Maser, R ;
Schell, D ;
Dollard, G ;
Jones, B ;
Davies, T ;
Sedlak, DL ;
David, MM .
ATMOSPHERIC ENVIRONMENT, 1997, 31 (16) :2393-2405
[4]  
Cooper W. A., 1988, Journal of Atmospheric and Oceanic Technology, V5, P823, DOI 10.1175/1520-0426(1988)005<0823:EOCOMW>2.0.CO
[5]  
2
[6]   EVALUATION OF AEROSOL ASPIRATION EFFICIENCY AS A FUNCTION OF STOKES NUMBER, VELOCITY RATIO AND NOZZLE ANGLE [J].
DURHAM, MD ;
LUNDGREN, DA .
JOURNAL OF AEROSOL SCIENCE, 1980, 11 (02) :179-188
[7]  
Dye J. E., 1984, Journal of Atmospheric and Oceanic Technology, V1, P329, DOI 10.1175/1520-0426(1984)001<0329:EOTFSS>2.0.CO
[8]  
2
[9]  
GERBER H, 1991, APPL OPTICS, V33, P4824