Optimization of biodiesel production from edible and non-edible vegetable oils

被引:368
作者
Patil, Prafulla D. [1 ]
Deng, Shuguang [1 ]
机构
[1] New Mexico State Univ, Dept Chem Engn, Las Cruces, NM 88003 USA
关键词
Biodiesel; Transesterification; Jatropha curcas; Pongamia glabra (Karanja); Free fatty acid; ALKALI-CATALYZED TRANSESTERIFICATION; PONGAMIA-PINNATA OIL; JATROPHA-CURCAS OIL; FUEL; ESTERS;
D O I
10.1016/j.fuel.2009.01.016
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The non-edible vegetable oils such as Jatropha curcas and Pongamia glabra (karanja) and edible oils such as corn and canola were found to be good viable sources for producing biodiesel. Biodiesel production from different edible and non-edible vegetable oils was compared in order to optimize the biodiesel production process. The analysis of different oil properties, fuel properties and process parameter optimization of non-edible and edible vegetable oils were investigated in detail. A two-step and single-step transesterification process was used to produce biodiesel from high free fatty acid (FFA) non-edible oils and edible vegetable oils, respectively. This process gives yields of about 90-95% for J. curcas, 80-85% for P. glabra. 80-95% for canola, and 85-96% for corn using potassium hydroxide (KOH) as a catalyst. The fuel properties of biodiesel produced were compared with ASTM standards for biodiesel. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1302 / 1306
页数:5
相关论文
共 26 条
[1]   Biodiesel development and characterization for use as a fuel in compression ignition engines [J].
Agarwal, AK ;
Das, LM .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2001, 123 (02) :440-447
[2]   Optimisation of biodiesel production by sunflower oil transesterification [J].
Antolín, G ;
Tinaut, FV ;
Briceño, Y ;
Castaño, V ;
Pérez, C ;
Ramírez, AI .
BIORESOURCE TECHNOLOGY, 2002, 83 (02) :111-114
[3]  
*ASTM, 2003, D18901 ASTM
[4]  
Boocock DGB, 1998, J AM OIL CHEM SOC, V75, P1167, DOI 10.1007/s11746-998-0130-8
[5]  
Canakci M, 2001, T ASAE, V44, P1429, DOI 10.13031/2013.7010
[6]  
Canakci M, 1999, T ASAE, V42, P1203, DOI 10.13031/2013.13285
[7]   Optimization of alkali-catalyzed transesterification of Brassica carinata oil for biodiesel production [J].
Dorado, MP ;
Ballesteros, E ;
López, FJ ;
Mittelbach, M .
ENERGY & FUELS, 2004, 18 (01) :77-83
[8]   Biodiesel fuels from vegetable oils:: Transesterification of Cynara cardunculus L. oils with ethanol [J].
Encinar, JM ;
González, JF ;
Rodríguez, JJ ;
Tejedor, A .
ENERGY & FUELS, 2002, 16 (02) :443-450
[9]  
Fangrui M., 1999, BIORESOURCE TECHNOL, V70, P1, DOI DOI 10.1016/S0960-8524(99)00025-5
[10]   TRANSESTERIFICATION KINETICS OF SOYBEAN OIL [J].
FREEDMAN, B ;
BUTTERFIELD, RO ;
PRYDE, EH .
JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1986, 63 (10) :1375-1380