NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11

被引:595
作者
Lundegaard, Claus [1 ]
Lamberth, Kasper [2 ]
Harndahl, Mikkel [2 ]
Buus, Soren [2 ]
Lund, Ole [1 ]
Nielsen, Morten [1 ]
机构
[1] Tech Univ Denmark, CBS, Dept Syst Biol, DK-2800 Lyngby, Denmark
[2] Univ Copenhagen, Panum Inst, Dept Int Hlth Immunol & Microbiol, Panum Inst 2236, DK-2200 Copenhagen, Denmark
关键词
D O I
10.1093/nar/gkn202
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 811 for all 122 alleles. artificial neural network predictions are given as actual IC50 values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 7580 confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC.
引用
收藏
页码:W509 / W512
页数:4
相关论文
共 8 条
[1]  
LUNDEGAARD C, 2008, BIOINFORMAT IN PRESS
[2]   Modeling the adaptive immune system: predictions and simulations [J].
Lundegaard, Claus ;
Lund, Ole ;
Kesmir, Can ;
Brunak, Soren ;
Nielsen, Morten .
BIOINFORMATICS, 2007, 23 (24) :3265-3275
[3]   Reliable prediction of T-cell epitopes using neural networks with novel sequence representations [J].
Nielsen, M ;
Lundegaard, C ;
Worning, P ;
Lauemoller, SL ;
Lamberth, K ;
Buus, S ;
Brunak, S ;
Lund, O .
PROTEIN SCIENCE, 2003, 12 (05) :1007-1017
[4]   Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach [J].
Nielsen, M ;
Lundegaard, C ;
Worning, P ;
Hvid, CS ;
Lamberth, K ;
Buus, S ;
Brunak, S ;
Lund, O .
BIOINFORMATICS, 2004, 20 (09) :1388-1397
[5]   A community resource benchmarking predictions of peptide binding to MHC-I molecules [J].
Peters, Bjoern ;
Bui, Huynh-Hoa ;
Frankild, Sune ;
Nielsen, Morten ;
Lundegaard, Claus ;
Kostem, Emrah ;
Basch, Derek ;
Lamberth, Kasper ;
Harndahl, Mikkel ;
Fleri, Ward ;
Wilson, Stephen S. ;
Sidney, John ;
Lund, Ole ;
Buus, Soren ;
Sette, Alessandro .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (06) :574-584
[6]   SYFPEITHI: database for MHC ligands and peptide motifs [J].
Rammensee, HG ;
Bachmann, J ;
Emmerich, NPN ;
Bachor, OA ;
Stevanovic, S .
IMMUNOGENETICS, 1999, 50 (3-4) :213-219
[7]  
Sette Alessandro, 2005, Immunity, V22, P155, DOI 10.1016/j.immuni.2005.01.009
[8]   SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation [J].
Sylvester-Hvid, C ;
Nielsen, M ;
Lamberth, K ;
Roder, G ;
Justesen, S ;
Lundegaard, C ;
Worning, P ;
Thomadsen, H ;
Lund, O ;
Brunak, S ;
Buus, S .
TISSUE ANTIGENS, 2004, 63 (05) :395-400