On the parity of exponents in the factorization of n!

被引:15
作者
Berend, D [1 ]
机构
[1] BEN GURION UNIV NEGEV,DEPT MATH & COMP SCI,IL-84105 BEER SHEVA,ISRAEL
关键词
D O I
10.1006/jnth.1997.2106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that, for any ic, there exist infinitely many positive integers n such that in the prime power factorization of n !, all first k primes appear to even exponents. This answers a question of Erdos and Graham (''Old and New Problems and Results in Combinatorial Number Theory,'' L'Enseignement Mathematique, Imprimerie Kundia, Geneva, 1980). A few generalizations are provided as well. (C) 1997 Academic Press.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 5 条
[1]  
Erdo P., 1980, Monographs of L'Enseignement Mathematique, V28
[2]   PRODUCT OF CONSECUTIVE INTEGERS IS NEVER A POWER [J].
ERDOS, P ;
SELFRIDGE, JL .
ILLINOIS JOURNAL OF MATHEMATICS, 1975, 19 (02) :292-301
[3]  
Furstenberg H., 1981, RECURRENCE ERGODIC T
[4]  
Olson J.E., 1969, J. Number Theory, V1, P195
[5]  
Olson JE., 1969, J. Number Theory, V1, P8, DOI [DOI 10.1016/0022-314X(69)90021-3, 10.1016/0022-314X(69)90021-3]