Multiscale Combinatorial Grouping

被引:692
作者
Arbelaez, Pablo [1 ]
Pont-Tuset, Jordi [2 ]
Barron, Jonathan T. [1 ]
Marques, Ferran [2 ]
Malik, Jitendra [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Politecn Cataluna, BarcelonaTech, Barcelona, Spain
来源
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2014年
关键词
D O I
10.1109/CVPR.2014.49
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a unified approach for bottom-up hierarchical image segmentation and object candidate generation for recognition, called Multiscale Combinatorial Grouping (MCG). For this purpose, we first develop a fast normalized cuts algorithm. We then propose a high-performance hierarchical segmenter that makes effective use of multiscale information. Finally, we propose a grouping strategy that combines our multiscale regions into highly-accurate object candidates by exploring efficiently their combinatorial space. We conduct extensive experiments on both the BSDS500 and on the PASCAL 2012 segmentation datasets, showing that MCG produces state-of-the-art contours, hierarchical regions and object candidates.
引用
收藏
页码:328 / 335
页数:8
相关论文
共 27 条
  • [1] Alexe B., 2012, IEEE T PATTERN ANAL, V99, P1
  • [2] [Anonymous], 2012, NIPS
  • [3] [Anonymous], 2012, CVPR
  • [4] [Anonymous], CVPR
  • [5] [Anonymous], ICCV
  • [6] [Anonymous], 2013, ICCV
  • [7] [Anonymous], IEEE TPAMI
  • [8] [Anonymous], 2009, CVPR
  • [9] [Anonymous], 2011, ICCV
  • [10] [Anonymous], 2005, MULTICRITERIA OPTIMI