Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography

被引:261
作者
Dousse, A. [1 ,2 ]
Lanco, L. [1 ]
Suffczynski, J. [1 ]
Semenova, E. [1 ]
Miard, A. [1 ]
Lemaitre, A. [1 ]
Sagnes, I. [1 ]
Roblin, C. [1 ]
Bloch, J. [1 ]
Senellart, P. [1 ]
机构
[1] CNRS, LPN, Lab Photon & Nanostruct, F-91460 Marcoussis, France
[2] Univ Paris Diderot, F-75205 Paris, France
关键词
D O I
10.1103/PhysRevLett.101.267404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using far-field optical lithography, a single quantum dot is positioned within a pillar microcavity with a 50 nm accuracy. The lithography is performed in situ at 10 K while measuring the quantum dot emission. Deterministic spectral and spatial matching of the cavity-dot system is achieved in a single step process and evidenced by the observation of strong Purcell effect. Deterministic coupling of two quantum dots to the same optical mode is achieved, a milestone for quantum computing.
引用
收藏
页数:4
相关论文
共 31 条
[1]   Silicon-based organic-inorganic microcavity and its dispersion curve from angle-resolved photoluminescence [J].
Arena, A ;
Patane, S ;
Saitta, G ;
Savasta, S ;
Girlanda, R ;
Rinaldi, R .
APPLIED PHYSICS LETTERS, 1998, 72 (20) :2571-2573
[2]   Deterministic coupling of single quantum dots to single nanocavity modes [J].
Badolato, A ;
Hennessy, K ;
Atatüre, M ;
Dreiser, J ;
Hu, E ;
Petroff, PM ;
Imamoglu, A .
SCIENCE, 2005, 308 (5725) :1158-1161
[3]   Electrically driven high-Q quantum dot-micropillar cavities [J].
Boeckler, C. ;
Reitzenstein, S. ;
Kistner, C. ;
Debusmann, R. ;
Loeffler, A. ;
Kida, T. ;
Hoefling, S. ;
Forchel, A. ;
Grenouillet, L. ;
Claudon, J. ;
Gerard, J. M. .
APPLIED PHYSICS LETTERS, 2008, 92 (09)
[4]   SHARP-LINE PHOTOLUMINESCENCE AND 2-PHOTON ABSORPTION OF ZERO-DIMENSIONAL BIEXCITONS IN A GAAS/ALGAAS STRUCTURE [J].
BRUNNER, K ;
ABSTREITER, G ;
BOHM, G ;
TRANKLE, G ;
WEIMANN, G .
PHYSICAL REVIEW LETTERS, 1994, 73 (08) :1138-1141
[5]   Spin-based quantum-information processing with semiconductor quantum dots and cavity QED [J].
Feng, M ;
D'Amico, I ;
Zanardi, P ;
Rossi, F .
PHYSICAL REVIEW A, 2003, 67 (01) :4
[6]  
Gerard JM, 1996, APPL PHYS LETT, V69, P449, DOI 10.1063/1.118135
[7]   Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity [J].
Gerard, JM ;
Sermage, B ;
Gayral, B ;
Legrand, B ;
Costard, E ;
Thierry-Mieg, V .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1110-1113
[8]   Self-limiting growth of quantum dot heterostructures on nonplanar {111}B substrates [J].
Hartmann, A ;
Loubies, L ;
Reinhardt, F ;
Kapon, E .
APPLIED PHYSICS LETTERS, 1997, 71 (10) :1314-1316
[9]  
Henini M, 2008, HANDBOOK OF SELF ASSEMBLED SEMICONDUCTOR NANOSTRUCTURES FOR NOVEL DEVICES IN PHOTONICS AND ELECTRONICS, pXIX, DOI 10.1016/B978-008046325-4.00029-3
[10]   Tuning photonic crystal nanocavity modes by wet chemical digital etching -: art. no. 021108 [J].
Hennessy, K ;
Badolato, A ;
Tamboli, A ;
Petroff, PM ;
Hu, E ;
Atatüre, M ;
Dreiser, J ;
Imamoglu, A .
APPLIED PHYSICS LETTERS, 2005, 87 (02)