HspB8 Participates in Protein Quality Control by a Non-chaperone-like Mechanism That Requires eIF2α Phosphorylation

被引:103
作者
Carra, Serena [1 ]
Brunsting, Jeanette F. [1 ]
Lambert, Herman [2 ]
Landry, Jacques [2 ]
Kampinga, Harm H. [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Radiat & Stress Cell Biol, NL-9713 AV Groningen, Netherlands
[2] Univ Laval, Ctr Rech Cancerol, Hotel Dieu, Quebec City, PQ G1R 2J6, Canada
关键词
HEAT-SHOCK-PROTEIN; INITIATION-FACTOR; 2-ALPHA; ENDOPLASMIC-RETICULUM; ALPHA-SUBUNIT; HSP22; HSPB8; IN-VIVO; HUNTINGTIN FRAGMENTS; MAMMALIAN HOMOLOG; UBIQUITIN LIGASE; FACTOR EIF-2;
D O I
10.1074/jbc.M807440200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aggregation of mutated proteins is a hallmark of many neurodegenerative disorders, including Huntington disease. We previously reported that overexpression of the HspB8 . Bag3 chaperone complex suppresses mutated huntingtin aggregation via autophagy. Classically, HspB proteins are thought to act as ATP-independent molecular chaperones that can bind unfolded proteins and facilitate their processing via the help of ATP-dependent chaperones such as the Hsp70 machine, in which Bag3 may act as a molecular link between HspB, Hsp70, and the ubiquitin ligases. However, here we show that HspB8 and Bag3 act in a non-canonical manner unrelated to the classical chaperone model. Rather, HspB8 and Bag3 induce the phosphorylation of the alpha-subunit of the translation initiator factor eIF2, which in turn causes a translational shut-down and stimulates autophagy. This function of HspB8 . Bag3 does not require Hsp70 and also targets fully folded substrates. HspB8 . Bag3 activity was independent of the endoplasmic reticulum (ER) stress kinase PERK, demonstrating that its action is unrelated to ER stress and suggesting that it activates stress-mediated translational arrest and autophagy through a novel pathway.
引用
收藏
页码:5523 / 5532
页数:10
相关论文
共 73 条
[1]   Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome [J].
Alberti, S ;
Demand, J ;
Esser, C ;
Emmerich, N ;
Schild, H ;
Höhfeld, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (48) :45920-45927
[2]   BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP [J].
Arndt, V ;
Daniel, C ;
Nastainczyk, W ;
Alberti, S ;
Höhfeld, J .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (12) :5891-5900
[3]   HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 (3DHSP27) [J].
Benndorf, R ;
Sun, XK ;
Gilmont, RR ;
Biedermann, KJ ;
Molloy, MP ;
Goodmurphy, CW ;
Cheng, H ;
Andrews, PC ;
Welsh, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (29) :26753-26761
[4]   Rapamycin alleviates toxicity of different aggregate-prone proteins [J].
Berger, Z ;
Ravikumar, B ;
Menzies, FM ;
Oroz, LG ;
Underwood, BR ;
Pangalos, MN ;
Schmitt, I ;
Wullner, U ;
Evert, BO ;
O'Kane, CJ ;
Rubinsztein, DC .
HUMAN MOLECULAR GENETICS, 2006, 15 (03) :433-442
[5]   Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2α kinase [J].
Berlanga, JJ ;
Santoyo, J ;
de Haro, C .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 265 (02) :754-762
[6]   p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death [J].
Bjorkoy, G ;
Lamark, T ;
Brech, A ;
Outzen, H ;
Perander, M ;
Overvatn, A ;
Stenmark, H ;
Johansen, T .
JOURNAL OF CELL BIOLOGY, 2005, 171 (04) :603-614
[7]   Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1α to the endoplasmic reticulum and promotes dephosphorylation of the α subunit of eukaryotic translation initiation factor 2 [J].
Brush, MH ;
Weiser, DC ;
Shenolikar, S .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (04) :1292-1303
[8]   HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells [J].
Carra, S ;
Sivilotti, M ;
Zobel, ATC ;
Lambert, H ;
Landry, J .
HUMAN MOLECULAR GENETICS, 2005, 14 (12) :1659-1669
[9]   HspB8 and Bag3 - A new chaperone complex targeting misfolded proteins to macroautophagy [J].
Carra, Serena ;
Seguin, Samuel J. ;
Landry, Jacques .
AUTOPHAGY, 2008, 4 (02) :237-239
[10]   HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy [J].
Carra, Serena ;
Seguin, Samuel J. ;
Lambert, Herman ;
Landry, Jacques .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (03) :1437-1444