Enhancing Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene by Active Sites Implantation

被引:101
作者
Feng, Leiyu [1 ]
Yang, Lanqin [1 ]
Huang, Zujing [1 ]
Luo, Jingyang [1 ]
Li, Mu [1 ]
Wang, Dongbo [1 ]
Chen, Yinguang [1 ]
机构
[1] Tongji Univ, Sch Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
METAL-FREE ELECTROCATALYSTS; CARBON; CATALYSTS; CATHODE; NANOSHEETS; CHALLENGES;
D O I
10.1038/srep03306
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The shortage of nitrogen active sites and relatively low nitrogen content result in unsatisfying eletrocatalytic activity and durability of nitrogen-doped graphene (NG) for oxygen reduction reaction (ORR). Here we report a novel approach to substantially enhance electrocatalytic oxygen reduction on NG electrode by the implantation of nitrogen active sites with mesoporous graphitic carbon nitride (mpg-C3N4). Electrochemical characterization revealed that in neutral electrolyte the resulting NG (I-NG) exhibited super electrocatalytic activity (completely 100% of four-electron ORR pathway) and durability (nearly no activity change after 100000 potential cyclings). When I-NG was used as cathode catalyst in microbial fuel cells (MFCs), power density and its drop percentage were also much better than the NG and Pt/C ones, demonstrating that the current I-NG was a perfect alternative to Pt/C and offered a new potential for constructing high-performance and less expensive cathode which is crucial for large-scale application of MFC technology.
引用
收藏
页数:8
相关论文
共 44 条
[1]  
Bard A., 2001, Electrochemical methods: Fundamentals and applications, V2nd, P383
[2]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[3]   Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells [J].
Chen, Shuiliang ;
Chen, Yu ;
He, Guanghua ;
He, Shuijian ;
Schroeder, Uwe ;
Hou, Haoqing .
BIOSENSORS & BIOELECTRONICS, 2012, 34 (01) :282-285
[4]   Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells [J].
Cheng, S ;
Liu, H ;
Logan, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (01) :364-369
[5]   Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J].
Collins, PG ;
Bradley, K ;
Ishigami, M ;
Zettl, A .
SCIENCE, 2000, 287 (5459) :1801-1804
[6]   Easy-to-Operate and Low-Temperature Synthesis of Gram-Scale Nitrogen-Doped Graphene and Its Application as Cathode Catalyst in Microbial Fuel Cells [J].
Feng, Leiyu ;
Chen, Yinguang ;
Chen, Lang .
ACS NANO, 2011, 5 (12) :9611-9618
[7]   Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells [J].
Feng, Yujie ;
Yang, Qiao ;
Wang, Xin ;
Logan, Bruce E. .
JOURNAL OF POWER SOURCES, 2010, 195 (07) :1841-1844
[8]  
Georgakilas V., 2012, CHEM REV, V112, P6516
[9]   Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene [J].
Goettmann, Frederic ;
Fischer, Anna ;
Antonietti, Markus ;
Thomas, Arne .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (27) :4467-4471
[10]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764