Clusters of poly(acrylates) and silver nanoparticles: Structure and applications for antimicrobial fabrics

被引:109
作者
Falletta, Ester [1 ,2 ]
Bonini, Massimo [1 ,2 ]
Fratini, Emiliano [1 ,2 ]
Lo Nostro, Antonella [3 ]
Pesavento, Giovanna [3 ]
Becheri, Alessio [1 ,2 ]
Lo Nostro, Pierandrea [1 ,2 ]
Canton, Patrizia [4 ]
Baglioni, Piero [1 ,2 ]
机构
[1] Univ Florence, Dept Chem, I-50019 Florence, Italy
[2] Univ Florence, CSGI, I-50019 Florence, Italy
[3] Univ Florence, Dept Publ Hlth, I-50134 Florence, Italy
[4] Univ Venice Ca Foscari, Dept Phys Chem, I-30170 Venice, Italy
关键词
D O I
10.1021/jp8035814
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silver-poly(acrylate) clusters have been synthesized in water by reduction of AgNO3 in the presence of poly(acrylates) of different molecular weights through two different methods, NaBH4 reduction and UV exposure. The structure of the clusters and the effect of the synthesis parameters on the size and polydispersity of the particles were evaluated by means of small-angle X-ray scattering (SAXS) and confirmed by UV-visible absorption and transmission electron microscopy (TEM). The results clearly show that the reduction method and the polymer chain length play key roles in the achievement of few-nanometer-sized nanoparticles. The effect of the pH was also investigated. The nanoparticle dispersions were then used to functionalize cotton, wool, and polyester samples in order to obtain antimicrobial textiles for biomedical applications. The antimicrobial activity of the as-treated samples has been tested against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Candida albicans.,
引用
收藏
页码:11758 / 11766
页数:9
相关论文
共 50 条
[1]   An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement [J].
Alt, V ;
Bechert, T ;
Steinrücke, P ;
Wagener, M ;
Seidel, P ;
Dingeldein, E ;
Domann, E ;
Schnettler, R .
BIOMATERIALS, 2004, 25 (18) :4383-4391
[2]   Stimuli-responsive polyelectrolyte polymer brushes prepared via atom-transfer radical polymerization [J].
Ayres, Neil ;
Boyes, Stephen G. ;
Brittain, William J. .
LANGMUIR, 2007, 23 (01) :182-189
[3]   Synthesis and antibacterial properties of silver nanoparticles [J].
Baker, C ;
Pradhan, A ;
Pakstis, L ;
Pochan, DJ ;
Shah, SI .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2005, 5 (02) :244-249
[4]   A NEUTRON-SCATTERING STUDY OF THE STRUCTURE OF A BIMODAL COLLOIDAL CRYSTAL [J].
BARTLETT, P ;
OTTEWILL, RH .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (04) :3306-3318
[5]   Synthesis and characterization of zinc oxide nanoparticles:: application to textiles as UV-absorbers [J].
Becheri, Alessio ;
Durr, Maximilian ;
Lo Nostro, Pierandrea ;
Baglioni, Piero .
JOURNAL OF NANOPARTICLE RESEARCH, 2008, 10 (04) :679-689
[6]  
Blanton T., 1995, POWDER DIFFR, V10, P91, DOI [10.1017/S0885715600014421, DOI 10.1017/S0885715600014421]
[7]   Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature [J].
Bozzi, A ;
Yuranova, T ;
Kiwi, J .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2005, 172 (01) :27-34
[8]  
Brzezinski S, 2007, POLIMERY-W, V52, P362
[9]   Polyurethane-silver fibers prepared by infiltration and reduction of silver nitrate [J].
Cho, Jae Whan ;
So, Jung Hyun .
MATERIALS LETTERS, 2006, 60 (21-22) :2653-2656
[10]   The study of antimicrobial activity and preservative effects of nanosilver ingredient [J].
Cho, KH ;
Park, JE ;
Osaka, T ;
Park, SG .
ELECTROCHIMICA ACTA, 2005, 51 (05) :956-960