Newton's method for analytic systems of equations with constant rank derivatives

被引:23
作者
Dedieu, JP [1 ]
Kim, MH
机构
[1] Univ Toulouse 3, MIP, F-31062 Toulouse 04, France
[2] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
Newton's method; system of equations; least-square solution;
D O I
10.1006/jcom.2001.0612
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study the convergence properties of Newton's sequence for analytic systems of equations with constant rank derivatives. Our main result is an alpha-theorem which ensures the convergence of Newton's sequence to a least-square solution of this system. (C) 2001 Elsevier Science (USA).
引用
收藏
页码:187 / 209
页数:23
相关论文
共 18 条
[1]  
[Anonymous], 1986, MERGING DISCIPLINES
[2]  
[Anonymous], ACTA NUMER
[3]  
BENISRAEL A, 1966, J MATH ANAL APPL, V15, P2243
[4]  
Blum L., 1997, COMPLEXITY REAL COMP
[5]  
Dedieu JP, 2000, MATH COMPUT, V69, P1099, DOI 10.1090/S0025-5718-99-01115-1
[6]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[7]  
GAUSS KF, 1809, WERKE, V7, P240
[8]  
HELGASON K, 1979, DIFFERENTIAL GEOMETR
[9]  
KIM MH, 1986, THESIS CUNY
[10]  
KIM MH, 1988, MATH COMPUT