Mutations that change the position of the putative γ-phosphate linker in the nucleotide binding domains of CFTR alter channel gating

被引:24
作者
Berger, AL
Ikuma, M
Hunt, JF
Thomas, PJ
Welsh, MJ
机构
[1] Univ Iowa, Coll Med, Howard Hughes Med Inst, Dept Internal Med, Iowa City, IA 52242 USA
[2] Univ Iowa, Coll Med, Howard Hughes Med Inst, Dept Physiol & Biophys, Iowa City, IA 52242 USA
[3] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
[4] Univ Texas, SW Med Ctr, Dept Physiol, Dallas, TX 75390 USA
关键词
D O I
10.1074/jbc.M109539200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is an ATP-binding cassette transporter that contains conserved nucleotide-binding domains (NBDs). In CFTR, the NBDs bind and hydrolyze ATP to open and close the channel. Crystal structures of related NBDs suggest a structural model with an important signaling role for a gamma-phosphate linker peptide that couples bound nucleotide to movement of an a-helical subdomain. We mutated two residues in CFTR that the structural model predicts will uncouple effects of nucleotide binding from movement of the alpha-helical subdomain. These residues are Gln-493 and Gln-1291, which may directly connect the ATP gamma-phosphate to the gamma-phosphate linker, and residues Asn-505 and Asn-1303, which may for hydrogen bonds that stabilize the linker. In NBD1, Q493A reduced the frequency of channel opening, suggesting a role for this residue in coupling ATP binding to channel opening. In contrast, N505C increased the frequency of channel opening, consistent with a role for Asn-505 in stabilizing the inactive state of the NBD. In NBD2, Q1291A decreased the effects of pyrophosphate without altering other functions. Mutations of Asn-1303 decreased the rate of channel opening and closing, suggesting an important role for NBD2 in controlling channel burst duration. These findings are consistent with both the bacterial NBD structural model and gating models for CFTR. Our results extend models of nucleotide-induced structural changes from bacterial NBDs to a functional mammalian ATP-binding cassette transporter.
引用
收藏
页码:2125 / 2131
页数:7
相关论文
共 43 条
[1]   The non-hydrolytic pathway of cystic fibrosis transmembrane conductance regulator ion channel gating [J].
Aleksandrov, AA ;
Chang, XB ;
Aleksandrov, L ;
Riordan, JR .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 528 (02) :259-265
[2]   Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator [J].
Aleksandrov, L ;
Mengos, A ;
Chang, XB ;
Aleksandrov, A ;
Riordan, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (16) :12918-12923
[3]   BACTERIAL PERIPLASMIC PERMEASES BELONG TO A FAMILY OF TRANSPORT PROTEINS OPERATING FROM ESCHERICHIA-COLI TO HUMAN - TRAFFIC ATPASES [J].
AMES, GF ;
MIMURA, CS ;
SHYAMALA, V .
FEMS MICROBIOLOGY LETTERS, 1990, 75 (04) :429-446
[4]  
ANDERSON MP, 1992, ADENINE NUCLEOTIDES, P399
[5]   PYROPHOSPHATE STIMULATES WILD-TYPE AND MUTANT CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR CL- CHANNELS [J].
CARSON, MR ;
WINTER, MC ;
TRAVIS, SM ;
WELSH, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (35) :20466-20472
[6]   THE 2 NUCLEOTIDE-BINDING DOMAINS OF CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) HAVE DISTINCT FUNCTIONS IN CONTROLLING CHANNEL ACTIVITY [J].
CARSON, MR ;
TRAVIS, SM ;
WELSH, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (04) :1711-1717
[7]   Structural and functional similarities between the nucleotide-binding domains of CFTR and GTP-binding proteins [J].
Carson, MR ;
Welsh, MJ .
BIOPHYSICAL JOURNAL, 1995, 69 (06) :2443-2448
[8]   PHOSPHATE STIMULATES CFIR CL- CHANNELS [J].
CARSON, MR ;
TRAVIS, SM ;
WINTER, MC ;
SHEPPARD, DN ;
WELSH, MJ .
BIOPHYSICAL JOURNAL, 1994, 67 (05) :1867-1875
[9]   RETRACTED: Structure of MsbA from E-coli:: A homolog of the multidrug resistance ATP binding cassette (ABC) transporters (Retracted Article. See vol 314, pg 1875, 2006) [J].
Chang, G ;
Roth, CB .
SCIENCE, 2001, 293 (5536) :1793-1800
[10]  
Dawson David C., 1999, Physiological Reviews, V79, pS47